45 research outputs found

    Using AI for Management of Field Emission in SRF Linacs

    Get PDF
    Field emission control, mitigation, and reduction is critical for reliable operation of high gradient superconducting radio-frequency (SRF) accelerators. With the SRF cavities at high gradients, the field emission of electrons from cavity walls can occur and will impact the operational gradient, radiological environment via activated components, and reliability of CEBAF’s two linacs. A new effort has started to minimize field emission in the CEBAF linacs by re-distributing cavity gradients. To measure radiation levels, newly designed neutron and gamma radiation dose rate monitors have been installed in both linacs. Artificial intelligence (AI) techniques will be used to identify cavities with high levels of field emission based on control system data such as radiation levels, cryogenic readbacks, and vacuum loads. The gradients on the most offending cavities will be reduced and compensated for by increasing the gradients on least offensive cavities. Training data will be collected during this year’s operational program and initial implementation of AI models will be deployed. Preliminary results and future plans are presented

    Real-Time Cavity Fault Prediction in CEBAF Using Deep Learning

    Get PDF
    Data-driven prediction of future faults is a major research area for many industrial applications. In this work, we present a new procedure of real-time fault prediction for superconducting radio-frequency (SRF) cavities at the Continuous Electron Beam Accelerator Facility (CEBAF) using deep learning. CEBAF has been afflicted by frequent downtime caused by SRF cavity faults. We perform fault prediction using pre-fault RF signals from C100-type cryomodules. Using the pre-fault signal information, the new algorithm predicts the type of cavity fault before the actual onset. The early prediction may enable potential mitigation strategies to prevent the fault. In our work, we apply a two-stage fault prediction pipeline. In the first stage, a model distinguishes between faulty and normal signals using a U-Net deep learning architecture. In the second stage of the network, signals flagged as faulty by the first model are classified into one of seven fault types based on learned signatures in the data. Initial results show that our model can successfully predict most fault types 200 ms before onset. We will discuss reasons for poor model performance on specific fault types

    Dearomatization Reactions of N-Heterocycles Mediated by Group 3 Complexes

    Full text link
    corecore