298 research outputs found

    Mixing layer instability and vorticity amplification in a creeping viscoelastic flow

    Get PDF
    We report quantitative evidence of mixing-layer elastic instability in a viscoelastic fluid flow between two widely spaced obstacles hindering a channel flow at Reβ‰ͺ1Re\ll1 and Wi≫1Wi\gg1. Two mixing layers with nonuniform shear velocity profiles are formed in the region between the obstacles. The mixing-layer instability arises in the vicinity of an inflection point on the shear velocity profile with a steep variation in the elastic stress. The instability results in an intermittent appearance of small vortices in the mixing layers and an amplification of spatio-temporal averaged vorticity in the elastic turbulence regime. The latter is characterized through scaling of friction factor with WiWi, and both pressure and velocity spectra. Furthermore, the observations reported provide improved understanding of the stability of the mixing layer in a viscoelastic fluid at large elasticity, i.e. Wi≫1Wi\gg1 and Reβ‰ͺ1Re\ll1, and oppose the current view of suppression of vorticity solely by polymer additives.Comment: 6 pages, 7 figure

    On the role of initial velocities in pair dispersion in a microfluidic chaotic flow

    Get PDF
    Chaotic flows drive mixing and efficient transport in fluids, as well as the associated beautiful complex patterns familiar to us from our every day life experience. Generating such flows at small scales where viscosity takes over is highly challenging from both the theoretical and engineering perspectives. This can be overcome by introducing a minuscule amount of long flexible polymers, resulting in a chaotic flow dubbed \textit{elastic turbulence}. At the basis of the theoretical frameworks for its study lie the assumptions of a spatially smooth and random-in-time velocity field. Previous measurements of elastic turbulence have been limited to two-dimensions. Using a novel three-dimensional particle tracking method, we conduct a microfluidic experiment, allowing us to explore elastic turbulence from the perspective of particles moving with the flow. Our findings show that the smoothness assumption breaks already at scales smaller than a tenth of the system size. Moreover, we provide conclusive experimental evidence that \textit{ballistic} separation prevails in the dynamics of pairs of tracers over long times and distances, exhibiting a memory of the initial separation velocities. The ballistic dispersion is universal, yet it has been overlooked so far in the context of small scales chaotic flows.Comment: 28 pages (Main Article: 17 pages ; Supplementary Information: 11 pages), 5 Main Figures, 6 Supplementary Figures, 3 Supplementary Notes, Supplementary Reference

    Drag enhancement and drag reduction in viscoelastic flow

    Get PDF
    Creeping flow of polymeric fluid without inertia exhibits elastic instabilities and elastic turbulence accompanied by drag enhancement due to elastic stress produced by flow-stretched polymers. However, in inertia-dominated flow at high \mbox{Re} and low fluid elasticity ElEl, a reduction in turbulent frictional drag is caused by an intricate competition between inertial and elastic stresses. Here, we explore the effect of inertia on the stability of viscoelastic flow in a broad range of control parameters ElEl and (\mbox{Re}, \mbox{Wi}). We present the stability diagram of observed flow regimes in \mbox{Wi}-\mbox{Re} coordinates and find that instabilities' onsets show unexpectedly non-monotonic dependence on ElEl. Further, three distinct regions in the diagram are identified based on ElEl. Strikingly, for high elasticity fluids we discover a complete relaminarization of flow at Reynolds number of the order of unity, different from a well-known turbulent drag reduction. These counterintuitive effects may be explained by a finite polymer extensibility and a suppression of vorticity at high \mbox{Wi}. Our results call for further theoretical and numerical development to uncover the role of inertial effect on elastic turbulence in a viscoelastic flow.Comment: 8 pages, 6 figure

    Stokes flow analogous to viscous electron current in graphene

    Get PDF
    Electron transport in two-dimensional conducting materials such as graphene, with dominant electron-electron interaction, exhibits unusual vortex flow that leads to a nonlocal current-field relation (negative resistance), distinct from the classical Ohm's law. The transport behavior of these materials is best described by low Reynolds number hydrodynamics, where the constitutive pressure-speed relation is Stoke's law. Here we report evidence of such vortices observed in a viscous flow of Newtonian fluid in a microfluidic device consisting of a rectangular cavityβˆ’-analogous to the electronic system. We extend our experimental observations to elliptic cavities of different eccentricities, and validate them by numerically solving bi-harmonic equation obtained for the viscous flow with no-slip boundary conditions. We verify the existence of a predicted threshold at which vortices appear. Strikingly, we find that a two-dimensional theoretical model captures the essential features of three-dimensional Stokes flow in experiments.Comment: 6 pages, 6 figure

    Fluid Vesicles in Flow

    Full text link
    We review the dynamical behavior of giant fluid vesicles in various types of external hydrodynamic flow. The interplay between stresses arising from membrane elasticity, hydrodynamic flows, and the ever present thermal fluctuations leads to a rich phenomenology. In linear flows with both rotational and elongational components, the properties of the tank-treading and tumbling motions are now well described by theoretical and numerical models. At the transition between these two regimes, strong shape deformations and amplification of thermal fluctuations generate a new regime called trembling. In this regime, the vesicle orientation oscillates quasi-periodically around the flow direction while asymmetric deformations occur. For strong enough flows, small-wavelength deformations like wrinkles are observed, similar to what happens in a suddenly reversed elongational flow. In steady elongational flow, vesicles with large excess areas deform into dumbbells at large flow rates and pearling occurs for even stronger flows. In capillary flows with parabolic flow profile, single vesicles migrate towards the center of the channel, where they adopt symmetric shapes, for two reasons. First, walls exert a hydrodynamic lift force which pushes them away. Second, shear stresses are minimal at the tip of the flow. However, symmetry is broken for vesicles with large excess areas, which flow off-center and deform asymmetrically. In suspensions, hydrodynamic interactions between vesicles add up to these two effects, making it challenging to deduce rheological properties from the dynamics of individual vesicles. Further investigations of vesicles and similar objects and their suspensions in steady or time-dependent flow will shed light on phenomena such as blood flow.Comment: 13 pages, 13 figures. Adv. Colloid Interface Sci., 201

    Vesicle dynamics in elongation flow: Wrinkling instability and bud formation

    Full text link
    We present experimental results on the relaxation dynamics of vesicles subjected to a time-dependent elongation flow. We observed and characterized a new instability, which results in the formation of higher order modes of the vesicle shape (wrinkles), after a switch in the direction of the gradient of the velocity. This surprising generation of membrane wrinkles can be explained by the appearance of a negative surface tension during the vesicle deflation, due to compression in a sign-switching transient. Moreover, the formation of buds in the vesicle membrane has been observed in the vicinity of the dynamical transition point.Comment: 4 pages, 4 figure
    • …
    corecore