579 research outputs found
The VIPERS Multi-Lambda Survey. I. UV and NIR Observations, multi-color catalogues and photometric redshifts
We present observations collected in the CFHTLS-VIPERS region in the
ultraviolet (UV) with the GALEX satellite (far and near UV channels) and the
near infrared with the CFHT/WIRCam camera (-band) over an area of 22 and
27 deg, respectively. The depth of the photometry was optimized to measure
the physical properties (e.g., SFR, stellar masses) of all the galaxies in the
VIPERS spectroscopic survey. The large volume explored by VIPERS will enable a
unique investigation of the relationship between the galaxy properties and
their environment (density field and cosmic web) at high redshift (0.5 < z <
1.2). In this paper, we present the observations, the data reductions and the
build-up of the multi-color catalogues. The CFHTLS-T0007 (gri-{\chi}^2) images
are used as reference to detect and measure the -band photometry, while
the T0007 u-selected sources are used as priors to perform the GALEX photometry
based on a dedicated software (EMphot). Our final sample reaches ~25
(at 5{\sigma}) and ~22 (at 3{\sigma}). The large spectroscopic sample
(~51,000 spectroscopic redshifts) allows us to highlight the robustness of our
star/galaxy separation, and the reliability of our photometric redshifts with a
typical accuracy 0.04 and a catastrophic failure rate {\eta} <
2% down to i~23. We present various tests on the band completeness and
photometric redshift accuracy by comparing with existing, overlapping deep
photometric catalogues. Finally, we discuss the BzK sample of passive and
active galaxies at high redshift and the evolution of galaxy morphology in the
(NUV-r) vs (r-K_s) diagram at low redshift (z < 0.25) thanks to the high image
quality of the CFHTLS. The images, catalogues and photometric redshifts for 1.5
million sources (down to 25 or 22) are released and
available at this URL: http://cesam.lam.fr/vipers-mls/Comment: 14 pages, 16 figures. Accepted for publication in A&A. Version to be
publishe
An Ishihara-style test of animal colour vision
ABSTRACT Colour vision mediates ecologically relevant tasks for many animals, such as mate choice, foraging and predator avoidance. However, our understanding of animal colour perception is largely derived from human psychophysics, and behavioural tests of non-human animals are required to understand how colour signals are perceived. Here, we introduce a novel test of colour vision in animals inspired by the Ishihara colour charts, which are widely used to identify human colour deficiencies. In our method, distractor dots have a fixed chromaticity (hue and saturation) but vary in luminance. Animals can be trained to find single target dots that differ from distractor dots in chromaticity. We provide MATLAB code for creating these stimuli, which can be modified for use with different animals. We demonstrate the success of this method with triggerfish, Rhinecanthus aculeatus, which quickly learnt to select target dots that differed from distractor dots, and highlight behavioural parameters that can be measured, including success of finding the target dot, time to detection and error rate. We calculated discrimination thresholds by testing whether target colours that were of increasing colour distances (ÎS) from distractor dots could be detected, and calculated discrimination thresholds in different directions of colour space. At least for some colours, thresholds indicated better discrimination than expected from the receptor noise limited (RNL) model assuming 5% Weber fraction for the long-wavelength cone. This methodology could be used with other animals to address questions such as luminance thresholds, sensory bias, effects of sensory noise, colour categorization and saliency
Automated reliability assessment for spectroscopic redshift measurements
We present a new approach to automate the spectroscopic redshift reliability
assessment based on machine learning (ML) and characteristics of the redshift
probability density function (PDF).
We propose to rephrase the spectroscopic redshift estimation into a Bayesian
framework, in order to incorporate all sources of information and uncertainties
related to the redshift estimation process, and produce a redshift posterior
PDF that will be the starting-point for ML algorithms to provide an automated
assessment of a redshift reliability.
As a use case, public data from the VIMOS VLT Deep Survey is exploited to
present and test this new methodology. We first tried to reproduce the existing
reliability flags using supervised classification to describe different types
of redshift PDFs, but due to the subjective definition of these flags, soon
opted for a new homogeneous partitioning of the data into distinct clusters via
unsupervised classification. After assessing the accuracy of the new clusters
via resubstitution and test predictions, unlabelled data from preliminary mock
simulations for the Euclid space mission are projected into this mapping to
predict their redshift reliability labels.Comment: Submitted on 02 June 2017 (v1). Revised on 08 September 2017 (v2).
Latest version 28 September 2017 (this version v3
La recherche visuelle de mots pourrait permettre une mesure indirecte des phénomÚnes inconscients de capture attentionnelle liés aux obsessions ou addictions
International audienceRechercher visuellement un mot précis parmi d'autres mots consiste avant tout à rejeter le plus vite possible les mots " distracteurs ". Ce processus de rejet serait inconscient, et de fait le sens de ces mots n'aurait en général aucun impact sur la recherche. Cependant, deux études [1,2] ont montré que des personnes anxieuses ou violentes étaient sensibles à la présence de mots liés à l'anxiété ou la violence. Modifier ces distracteurs pourrait permettre de mesurer les phénomÚnes inconscients de capture attentionnelle, notamment dans le cadre d'addictions ou d'obsessions
QUBIC: The QU Bolometric Interferometer for Cosmology
One of the major challenges of modern cosmology is the detection of B-mode
polarization anisotropies in the CMB. These originate from tensor fluctuations
of the metric produced during the inflationary phase. Their detection would
therefore constitute a major step towards understanding the primordial
Universe. The expected level of these anisotropies is however so small that it
requires a new generation of instruments with high sensitivity and extremely
good control of systematic effects. We propose the QUBIC instrument based on
the novel concept of bolometric interferometry, bringing together the
sensitivity advantages of bolometric detectors with the systematics effects
advantages of interferometry. Methods: The instrument will directly observe the
sky through an array of entry horns whose signals will be combined together
using an optical combiner. The whole set-up is located inside a cryostat.
Polarization modulation will be achieved using a rotating half-wave plate and
interference fringes will be imaged on two focal planes (separated by a
polarizing grid) tiled with bolometers. We show that QUBIC can be considered as
a synthetic imager, exactly similar to a usual imager but with a synthesized
beam formed by the array of entry horns. Scanning the sky provides an
additional modulation of the signal and improve the sky coverage shape. The
usual techniques of map-making and power spectrum estimation can then be
applied. We show that the sensitivity of such an instrument is comparable with
that of an imager with the same number of horns. We anticipate a low level of
beam-related systematics thanks to the fact that the synthesized beam is
determined by the location of the primary horns. Other systematics should be
under good control thanks to an autocalibration technique, specific to our
concept, that will permit the accurate determination of most of the systematics
parameters.Comment: 12 pages, 10 figures, submitted to Astronomy and Astrophysic
Adolescentsâ Developing Sensitivity to Orthographic and Semantic Cues During Visual Search for Words
Two eye-tracking experiments were conducted to assess the influence of words either looking like the target word (orthographic distractors) or semantically related to the target word (semantic distractors) on visual search for words within lists by adolescents of 11, 13, and 15 years of age. In Experiment 1 (literal search task), participants saw the target word before the search (e.g., âravenâ), whereas in Experiment 2 (categorical task) the target word was only defined by its semantic category (e.g., âbirdâ). In both experiments, participantsâ search times decreased from fifth to ninth grade, both because older adolescents gazed less often at non-target words during the search and because they could reject non-target words more quickly once they were fixated. Progress in visual search efficiency was associated with a large increase in word identification skills, which were a strong determinant of average gaze durations and search times for the categorical task, but much less for the literal task. In the literal task, the presence of orthographic or semantic distractors in the list increased search times for all age groups. In the categorical task, the impact of semantic distractor words was stronger than in the literal task because participants needed to gaze at the semantic distractors longer than at the other words before rejecting them. Altogether, the data support the assumption that the progressive automation of word decoding up until the age of 12 and the better quality of older adolescentsâ lexical representations facilitate a flexible use of both the perceptual and semantic features of words for top-down guidance within the displays. In particular, older adolescents were better prepared to aim at or reject words without gazing at them directly. Finally, the overall similar progression of the maturation of single word visual search processes and that of more real-life information search within complex verbal documents suggests that the young adolescentsâ difficulties in searching the Web effectively could be due to their insufficiently developed lexical representations and word decoding abilities
High failure rate of the interspinous distraction device (X-Stop) for the treatment of lumbar spinal stenosis caused by degenerative spondylolisthesis
The X-Stop interspinous distraction device has shown to be an attractive alternative to conventional surgical procedures in the treatment of symptomatic degenerative lumbar spinal stenosis. However, the effectiveness of the X-Stop in symptomatic degenerative lumbar spinal stenosis caused by degenerative spondylolisthesis is not known. A cohort of 12 consecutive patients with symptomatic lumbar spinal stenosis caused by degenerative spondylolisthesis were treated with the X-Stop interspinous distraction device. All patients had low back pain, neurogenic claudication and radiculopathy. Pre-operative radiographs revealed an average slip of 19.6%. MRI of the lumbosacral spine showed a severe stenosis. In ten patients, the X-Stop was placed at the L4â5 level, whereas two patients were treated at both, L3â4 and L4â5 level. The mean follow-up was 30.3Â months. In eight patients a complete relief of symptoms was observed post-operatively, whereas the remaining 4 patients experienced no relief of symptoms. Recurrence of pain, neurogenic claudication, and worsening of neurological symptoms was observed in three patients within 24Â months. Post-operative radiographs and MRI did not show any changes in the percentage of slip or spinal dimensions. Finally, secondary surgical treatment by decompression with posterolateral fusion was performed in seven patients (58%) within 24Â months. In conclusion, the X-Stop interspinous distraction device showed an extremely high failure rate, defined as surgical re-intervention, after short term follow-up in patients with spinal stenosis caused by degenerative spondylolisthesis. We do not recommend the X-Stop for the treatment of spinal stenosis complicating degenerative spondylolisthesis
First Detection of Polarization of the Submillimetre Diffuse Galactic Dust Emission by Archeops
We present the first determination of the Galactic polarized emission at 353
GHz by Archeops. The data were taken during the Arctic night of February 7,
2002 after the balloon--borne instrument was launched by CNES from the Swedish
Esrange base near Kiruna. In addition to the 143 GHz and 217 GHz frequency
bands dedicated to CMB studies, Archeops had one 545 GHz and six 353 GHz
bolometers mounted in three polarization sensitive pairs that were used for
Galactic foreground studies. We present maps of the I, Q, U Stokes parameters
over 17% of the sky and with a 13 arcmin resolution at 353 GHz (850 microns).
They show a significant Galactic large scale polarized emission coherent on the
longitude ranges [100, 120] and [180, 200] deg. with a degree of polarization
at the level of 4-5%, in agreement with expectations from starlight
polarization measurements. Some regions in the Galactic plane (Gem OB1,
Cassiopeia) show an even stronger degree of polarization in the range 10-20%.
Those findings provide strong evidence for a powerful grain alignment mechanism
throughout the interstellar medium and a coherent magnetic field coplanar to
the Galactic plane. This magnetic field pervades even some dense clouds.
Extrapolated to high Galactic latitude, these results indicate that
interstellar dust polarized emission is the major foreground for PLANCK-HFI CMB
polarization measurement.Comment: Submitted to Astron. & Astrophys., 14 pages, 12 Fig., 2 Table
Dancing in the dark: galactic properties trace spin swings along the cosmic web
A large-scale hydrodynamical cosmological simulation, Horizon-AGN, is used to investigate the alignment between the spin of galaxies and the cosmic filaments above redshift 1.2. The analysis of more than 150000 galaxies per time step in the redshift range 1.2 < z < 1.8 with morphological diversity shows that the spin of low-mass blue galaxies is preferentially aligned with their neighbouring filaments, while high-mass red galaxies tend to have a perpendicular spin. The reorientation of the spin of massive galaxies is provided by galaxy mergers, which are significant in their mass build-up. We find that the stellar mass transition from alignment to misalignment happens around 3 Ă 1010âMâ. Galaxies form in the vorticity-rich neighbourhood of filaments, and migrate towards the nodes of the cosmic web as they convert their orbital angular momentum into spin. The signature of this process can be traced to the properties of galaxies, as measured relative to the cosmic web. We argue that a strong source of feedback such as active galactic nuclei is mandatory to quench in situ star formation in massive galaxies and promote various morphologies. It allows mergers to play their key role by reducing post-merger gas inflows and, therefore, keeping spins misaligned with cosmic filament
The VIMOS Public Extragalactic Redshift Survey (VIPERS) : galaxy segregation inside filaments at z â 0.7
We present the first quantitative detection of large-scale filamentary structure at z â 0.7 in the large cosmological volume probed by the VIMOS Public Extragalactic Redshift Survey (VIPERS). We use simulations to show the capability of VIPERS to recover robust topological features in the galaxy distribution, in particular the filamentary network. We then investigate how galaxies with different stellar masses and stellar activities are distributed around the filaments and find a significant segregation, with the most massive or quiescent galaxies being closer to the filament axis than less massive or active galaxies. The signal persists even after down-weighting the contribution of peak regions. Our results suggest that massive and quiescent galaxies assemble their stellar mass through successive mergers during their migration along filaments towards the nodes of the cosmic web. On the other hand, low-mass star-forming galaxies prefer the outer edge of filaments, a vorticity rich region dominated by smooth accretion, as predicted by the recent spin alignment theory. This emphasizes the role of large scale cosmic flows in shaping galaxy properties.PostprintPeer reviewe
- âŠ