1 research outputs found

    Extreme Ultraviolet Reflective Grating Characterization and Simulationsfor the Aspera SmallSat Mission

    Get PDF
    The Aspera SmallSat mission is designed to detect and map the warm-hot gaseous component of the halos of nearby galaxies through long-slit spectroscopy of the ionized O VI emission line (103.2 nm) for the first time. The Aspera Rowland circle type spectrograph uses a toroidal grating coated with a multilayer film consisting of aluminum, lithium fluoride, and magnesium fluoride capping to optimize reflectivity in the extreme ultraviolet (EUV) waveband from 103 to 104nm. We discuss the grating characterization test setup at the University of Arizona (UA), which will validate the multilayer coating and grating efficiency in a UV vacuum chamber. We also simulate the reflectivity of the multilayer thin film coating using IMD IDL software to compare simulated results with measured reflectivity. Additionally, non-sequential ray trace simulations and 3D CAD modeling are used for verification of the test setup. Finally, the implications of the differences between the measured and simulated reflectivity and grating efficiencies are considered, including impact to the mission
    corecore