5 research outputs found

    HATT, Hydraulic and Astronomic Tidal Training: User manual

    No full text
    Coastal EngineeringDelft Projectmanagemen

    Are monodisperse phospholipid-coated microbubbles “mono-acoustic?”

    Get PDF
    Phospholipid-coated microbubbles with a uniform acoustic response are a promising avenue for functional ultrasound sensing. A uniform acoustic response requires both a monodisperse size distribution and uniform viscoelastic shell properties. Monodisperse microbubbles can be produced in a microfluidic flow focusing device. Here, we investigate whether such monodisperse microbubbles have uniform viscoelastic shell properties and thereby a uniform “mono-acoustic” response. To this end, we visualized phase separation of the DSPC and DPPE-PEG5000 lipid shell components and measured the resonance curves of nearly 2000 single and freely floating microbubbles using a high-frequency acoustic scattering technique. The results demonstrate inhomogeneous phase-separated shell microdomains across the monodisperse bubble population, which may explain the measured inhomogeneous viscoelastic shell properties. The shell viscosity varied over an order of magnitude and the resonance frequency by a factor of two indicating both a variation in shell elasticity and in initial surface tension despite the relatively narrow size distribution.ImPhys/Verweij grou

    High Frame Rate Contrast-Enhanced Ultrasound for Velocimetry in the Human Abdominal Aorta

    Get PDF
    Treatment of abdominal aortic (AA) aneurysms and stenotic lesions may be improved by analyzing their associated blood flow patterns. Angle-independent blood flow patterns in the AA can be obtained by combining echo-particle image velocimetry (ePIV) with high frame rate contrast-enhanced ultrasonography. However, ePIV performance is affected by ultrasound contrast agent (UCA) concentration, microbubble stability and tissue clutter. In this study we assessed the influence of acoustic pressure and UCA concentration on image quality for ePIV analysis. We also compared amplitude modulation (AM) and singular value decomposition (SVD) as tissue suppression strategies for ePIV. Fourteen healthy volunteers were imaged in the region of the distal AA. We tested four different UCA bolus volumes (0.25, 0.5, 0.75 and 1.5 ml) and four different acoustic output pressures (mechanical indices: 0.01, 0.03, 0.06 and 0.09). As image quality metrics, we measured contrast-to-background ratio, bubble disruption ratio and maximum normalized cross-correlation value during ePIV. At mechanical indices ≥ 0.06, we detected severe bubble destruction, suggesting that very low acoustic pressures should be used for ePIV. SVD was able to suppress tissue clutter better than AM. The maximum tracking correlation was affected by both UCA concentration and flow rate, where at high flow rates, lower UCA concentrations resulted in slightly higher correlation values but more signal drop-outs during late diastole. High frame rate ePIV was successfully performed in the AA of healthy volunteers and shows promise for future studies in patients.Accepted Author manuscriptImPhys/Acoustical Wavefield Imagin

    Time-resolved absolute radius estimation of vibrating contrast microbubbles using an acoustical camera

    Get PDF
    Ultrasound (US) contrast agents consist of microbubbles ranging from 1 to 10 μm in size. The acoustical response of individual microbubbles can be studied with high-frame-rate optics or an "acoustical camera"(AC). The AC measures the relative microbubble oscillation while the optical camera measures the absolute oscillation. In this article, the capabilities of the AC are extended to measure the absolute oscillations. In the AC setup, microbubbles are insonified with a high- (25 MHz) and low-frequency US wave (1-2.5 MHz). Other than the amplitude modulation (AM) from the relative size change of the microbubble (employed in Renaud, Bosch, van der Steen, and de Jong (2012a). "An 'acoustical camera' for in vitro characterization of contrast agent microbubble vibrations,"Appl. Phys. Lett. 100(10), 101911, the high-frequency response from individual vibrating microbubbles contains a phase modulation (PM) from the microbubble wall displacement, which is the extension described here. The ratio of PM and AM is used to determine the absolute radius, R0. To test this sizing, the size distributions of two monodisperse microbubble populations (R 0 = 2.1 and 3.5 μm) acquired with the AC were matched to the distribution acquired with a Coulter counter. As a result of measuring the absolute size of the microbubbles, this "extended AC"can capture the full radial dynamics of single freely floating microbubbles with a throughput of hundreds of microbubbles per hour. ImPhys/Medical Imagin

    Quantum inspire - Qutech's platform for co-development and collaboration in quantum computing

    No full text
    The mission of QuTech is to bring quantum technology to industry and society by translating fundamental scientific research into applied research. To this end we are developing Quantum Inspire (QI), a full-stack quantum computer prototype for future co-development and collaborative R&D in quantum computing. A prerelease of this prototype system is already offering the public cloud-based access to QuTech technologies such as a programmable quantum computer simulator (with up to 31 qubits) and tutorials and user background knowledge on quantum information science (www.quantum-inspire.com). Access to a programmable CMOS-compatible Silicon spin qubit-based quantum processor will be provided in the next deployment phase. The first generation of QI's quantum processors consists of a double quantum dot hosted in an in-house grown SiGe/28Si/SiGe heterostructure, and defined with a single layer of Al gates. Here we give an overview of important aspects of the QI full-stack. We illustrate QI's modular system architecture and we will touch on parts of the manufacturing and electrical characterization of its first generation two spin qubit quantum processor unit. We close with a section on QI's qubit calibration framework. The definition of a single qubit Pauli X gate is chosen as concrete example of the matching of an experiment to a component of the circuit model for quantum computation.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.BUS/TNO STAFFQuTechQCD/Vandersypen LabQCD/Scappucci LabQN/Veldhorst LabQN/Vandersypen LabBUS/Quantum Delf
    corecore