35 research outputs found

    The effect of the dielectric end groups on the positive bias stress stability of N2200 organic field effect transistors

    Get PDF
    Bias stress degradation in conjugated polymer field-effect transistors is a fundamental problem in these disordered materials and can be traced back to interactions of the material with environmental species,[1,2,3] as well as fabrication-induced defects.[4,5] However, the effect of the end groups of the polymer gate dielectric and the associated dipole-induced disorder on bias stress stability has not been studied so far in high-performing n-type materials, such as N2200.[6,7] In this work, the performance metrics of N2200 transistors are examined with respect to dielectrics with different end groups (Cytop-M and Cytop-S).[8] We hypothesize that the polar end groups would lead to increased dipole-induced disorder, and worse performance.[1,9,10] The long-time annealing scheme at lower temperatures used in the paper is assumed to lead to better crystallization by allowing the crystalline domains to reorganize in the presence of the solvent.[11] It is hypothesized that the higher crystallinity could narrow down the range at which energy carriers are induced and thus decrease the gate dependence of the mobility. The results show that the dielectric end groups do not influence the bias stress stability of N2200 transistors. However, long annealing times result in a dramatic improvement in bias stress stability, with the most stable devices having a mobility that is only weakly dependent on or independent of gate voltage

    Thermoelectric nanospectroscopy for the imaging of molecular fingerprints

    Get PDF
    We present a nanospectroscopic device platform allowing simple and spatially resolved thermoelectric detection of molecular fingerprints of soft materials. Our technique makes use of a locally generated thermal gradient converted into a thermoelectric photocurrent that is read out in the underlying device. The thermal gradient is generated by an illuminated atomic force microscope tip that localizes power absorption onto the sample surface. The detection principle is illustrated using a concept device that contains a nanostructured strip of polymethyl methacrylate (PMMA) defined by electron beam lithography. The platform's capabilities are demonstrated through a comparison between the spectrum obtained by on-chip thermoelectric nanospectroscopy with a nano-FTIR spectrum recorded by scattering-type scanning near-field optical microscopy at the same position. The subwavelength spatial resolution is demonstrated by a spectral line scan across the edge of the PMMA layer

    Epitaxial Zn(x)Fe(3-x)O(4) Thin Films: A Spintronic Material with Tunable Electrical and Magnetic Properties

    Full text link
    The ferrimagnetic spinel oxide Zn(x)Fe(3-x)O(4) combines high Curie temperature and spin polarization with tunable electrical and magnetic properties, making it a promising functional material for spintronic devices. We have grown epitaxial thin films with 0<=x<=0.9 on MgO(001) substrates with excellent structural properties both in pure Ar atmosphere and an Ar/O2 mixture by laser molecular beam epitaxy. We find that the electrical conductivity and the saturation magnetization can be tuned over a wide range during growth. Our extensive characterization of the films provides a clear picture of the underlying physics of this spinel ferrimagnet with antiparallel Fe moments on the A and B sublattice: (i) Zn substitution removes both Fe3+ moments from the A sublattice and itinerant charge carriers from the B sublattice, (ii) growth in finite oxygen partial pressure generates Fe vacancies on the B sublattice also removing itinerant charge carriers, and (iii) application of both Zn substitution and excess oxygen results in a compensation effect as Zn substitution partially removes the Fe vacancies. A decrease (increase) of charge carrier density results in a weakening (strengthening) of double exchange and thereby a decrease (increase) of conductivity and the saturation magnetization. This scenario is confirmed by the observation that the saturation magnetization scales with the longitudinal conductivity. The combination of tailored films with semiconductor materials such as ZnO in multi-functional heterostructures seems to be particularly appealing.Comment: 13 pages, 8 figures, Hall effect data removed, anti-phase boundary discussion added, accepted for publication in PRB79 (2009

    High-mobility, trap-free charge transport in conjugated polymer diodes

    Get PDF
    Charge transport in conjugated polymer semiconductors has traditionally been thought to be limited to a low mobility regime by pronounced energetic disorder. Much progress has recently been made in advancing carrier mobilities in field-effect transistors through developing low-disorder conjugated polymers. However, in diodes these polymers have to date not shown much improved mobilities, presumably reflecting the fact that in diodes lower carrier concentrations are available to fill up residual tail states in the density of states. Here, we show that the bulk charge transport in low-disorder polymers is limited by water-induced trap states and that their concentration can be dramatically reduced through incorporating small molecular additives into the polymer film. Upon incorporation of the additives we achieve space-charge limited current characteristics that resemble molecular single crystals such as rubrene with high, trap-free SCLC mobilities up to 0.2 cm2/Vs and a width of the residual tail state distribution comparable to kBT.We gratefully acknowledge financial support the Engineering and Physical Sciences Research Council (EPSRC) through a Programme Grant (EP/M005141/1). M.N. acknowledges financial support from the European Commission through a Marie-Curie Individual Fellowship (EC Grant Agreement Number: 747461)

    Chasing the ‘Killer’ Phonon Mode for the Rational Design of Low Disorder, High Mobility Molecular Semiconductors

    Get PDF
    Molecular vibrations play a critical role in the charge transport properties of weakly van der Waals bonded organic semiconductors. To understand which specific phonon modes contribute most strongly to the electron – phonon coupling and ensuing thermal energetic disorder in some of the most widely studied high mobility molecular semiconductors, we have combined state-of-the-art quantum mechanical simulations of the vibrational modes and the ensuing electron phonon coupling constants with experimental measurements of the low-frequency vibrations using inelastic neutron scattering and terahertz time-domain spectroscopy. In this way we have been able to identify the long-axis sliding motion as a ‘killer’ phonon mode, which in some molecules contributes more than 80% to the total thermal disorder. Based on this insight, we propose a way to rationalize mobility trends between different materials and derive important molecular design guidelines for new high mobility molecular semiconductors.Royal Society German Research Foundation European Research Council Engineering and Physical Sciences Research Council ARCHER UK National Supercomputing Service Belgian National Fund for Scientific Research Leverhulme Trust Wiener-Anspach Foundation Belgian Walloon Region GENCI-CINES/IDRI

    Roadmap on energy harvesting materials

    Get PDF
    Ambient energy harvesting has great potential to contribute to sustainable development and address growing environmental challenges. Converting waste energy from energy-intensive processes and systems (e.g. combustion engines and furnaces) is crucial to reducing their environmental impact and achieving net-zero emissions. Compact energy harvesters will also be key to powering the exponentially growing smart devices ecosystem that is part of the Internet of Things, thus enabling futuristic applications that can improve our quality of life (e.g. smart homes, smart cities, smart manufacturing, and smart healthcare). To achieve these goals, innovative materials are needed to efficiently convert ambient energy into electricity through various physical mechanisms, such as the photovoltaic effect, thermoelectricity, piezoelectricity, triboelectricity, and radiofrequency wireless power transfer. By bringing together the perspectives of experts in various types of energy harvesting materials, this Roadmap provides extensive insights into recent advances and present challenges in the field. Additionally, the Roadmap analyses the key performance metrics of these technologies in relation to their ultimate energy conversion limits. Building on these insights, the Roadmap outlines promising directions for future research to fully harness the potential of energy harvesting materials for green energy anytime, anywhere
    corecore