5 research outputs found
Stress anisotropy in polymer brushes and its effects on wetting
Polymer brushes, coatings consisting of densely grafted macromolecules, have
been known to experience an intrinsic lateral compressive stress, originating
from chain elasticity and excluded volume interactions. This lateral stress
complicates a proper definition of the interface and, thereby, of the
interfacial tension. Moreover, its effect on wettability has remained unclear.
Here, we study the link between grafting-induced compressive lateral stress in
polymer brushes, interfacial tension, and brush wettability using
coarse-grained molecular dynamics simulations. A central result is that the
liquid contact angle is independent of grafting density, which implies that the
strength of the compressive stress inside brush has no influence on the
wettability. Interestingly, though the interfacial tensions lack a proper
definition, the difference in interfacial tension between wet and dry brushes
is perfectly well-defined. We confirm explicitly from Young's law that this
difference offers an accurate description of the brush wettability. It is
demonstrated how these results can be explained from the fact that the
compressive stress appears "symmetrically" in wet and dry brushes. We discuss
our findings in the light of autophobic dewetting and point out the connection
to the Shuttleworth effect for wetting on elastomers
Pressure Anisotropy in Polymer Brushes and Its Effects on Wetting
Polymer brushes, coatings consisting of densely grafted macromolecules, experience an intrinsic lateral compressive pressure, originating from chain elasticity and excluded volume interactions. This lateral pressure complicates a proper definition of the interface and, thereby, the determination and interpretation of the interfacial tension and its relation to the wetting behavior of brushes. Here, we study the link among grafting-induced compressive lateral pressure in polymer brushes, interfacial tension, and brush wettability using coarse-grained molecular dynamics simulations. We focus on grafting densities and polymer–liquid affinities such that the polymer and liquid do not tend to mix. For these systems, a central result is that the liquid contact angle is independent of the grafting density, which implies that the grafting-induced lateral compressive pressure in the brush does not influence its wettability. Although the definition of brush interfacial tensions is complicated by the grafting-induced pressure, the difference in the interfacial tension between wet and dry brushes is perfectly well-defined. We confirm explicitly from Young’s law that this difference offers an accurate description of the brush wettability. We then explore a method to isolate the grafting-induced contribution to the lateral pressure, assuming the interfacial tension is independent of grafting density. This scenario indeed allows disentanglement of interfacial and grafting effects for a broad range of parameters, except close to the mixing point. We separately discuss the latter case in light of autophobic dewetting
Design, construction, and testing of an accurate low-cost humidistat for laboratory-scale applications
Stable and precise control of humidity is imperative for a wide variety of experiments. However, commercially available humidistats (devices that maintain a constant humidity) are often prohibitively expensive. Here, we present a simple yet effective humidistat for laboratory-scale applications that can be easily and affordably (<€250) constructed based on an Arduino Uno as microcontroller, a set of proportional miniature solenoid valves, a gas washing bottle, and a humidity sensor. The microcontroller implements a PID controller that regulates the ratio of a dry and humid airflow. The design and implementation of the device, including a custom driver circuit for the solenoids, are described in detail, and the firmware is freely available online. Finally, we demonstrate its proper operation and performance through step response and long-term stability tests, which shows settling times of approx. 30 s and an attainable relative humidity range of 10–95
Sorption Characteristics of Polymer Brushes in Equilibrium with Solvent Vapors
While polymer brushes in contact with liquids have been researched intensively, the characteristics of brushes in equilibrium with vapors have been largely unexplored, despite their relevance for many applications, including sensors and smart adhesives. Here, we use molecular dynamics simulations to show that solvent and polymer density distributions for brushes exposed to vapors are qualitatively different from those of brushes exposed to liquids. Polymer density profiles for vapor-solvated brushes decay more sharply than for liquid-solvated brushes. Moreover, adsorption layers of enhanced solvent density are formed at the brush–vapor interface. Interestingly and despite all of these effects, we find that solvent sorption in the brush is described rather well with a simple mean-field Flory–Huggins model that incorporates an entropic penalty for stretching of the brush polymers, provided that parameters such as the polymer–solvent interaction parameter, grafting density, and relative vapor pressure are varied individually
Vapor Swelling of Polymer Brushes Compared to Nongrafted Films
Polymer brushes, coatings of polymers covalently end-grafted to a surface, have been proposed as a more stable alternative to traditional physisorbed coatings. However, when such coatings are applied in settings such as vapor sensing and gas separation technologies, their responsiveness to solvent vapors becomes an important consideration. It can be anticipated that the end-anchoring in polymer brushes reduces the translational entropy of the polymers and instead introduces an entropic penalty against stretching when vapor is absorbed. Therefore, swelling can be expected to be diminished in brushes compared to nongrafted films. Here, we study the effect of the anchoring-constraint on vapor sorption in polymer coatings using coarse-grained molecular dynamics simulations as well as humidity-controlled ellipsometry on chemically identical polymer brushes and nongrafted films. We find a qualitative agreement between simulations and experiments, with both indicating that brushes certainly swell less than physisorbed films, although this effect is minor for common grafting densities. Our results imply that polymer brushes indeed hold great potential for the intended applications