4,503 research outputs found
Intrinsic curvature of curves and surfaces and a Gauss-Bonnet theorem in the Heisenberg group
We use a Riemannnian approximation scheme to define a notion of intrinsic Gaussian curvature for a Euclidean C2 -smooth surface in the Heisenberg group H away from characteristic points, and a notion of intrinsic signed geodesic curvature for Euclidean C2 -smooth curves on surfaces. These results are then used to prove a Heisenberg version of the Gauss–Bonnet theorem. An application to Steiner’s formula for the Carnot–Carathéodory distance in H is provided
Multitrace deformations, Gamow states, and Stability of AdS/CFT
We analyze the effect of multitrace deformations in conformal field theories
at leading order in a large N approximation. These theories admit a description
in terms of a weakly coupled gravity dual. We show how the deformations can be
mapped into boundary terms of the gravity theory and how to reproduce the RG
equations found in field theory. In the case of doubletrace deformations, and
for bulk scalars with masses in the range , the deformed
theory flows between two fixed points of the renormalization group, manifesting
a resonant behavior at the scale characterizing the transition between the two
CFT's. On the gravity side the resonance is mapped into an IR non-normalizable
mode (Gamow state) whose overlap with the UV region increases as the dual
operator approaches the free field limit. We argue that this resonant behavior
is a generic property of large N theories in the conformal window, and
associate it to a remnant of the Nambu-Goldstone mode of dilatation invariance.
We emphasize the role of nonminimal couplings to gravity and establish a
stability theorem for scalar/gravity systems with AdS boundary conditions in
the presence of arbitrary boundary potentials and nonminimal coupling.Comment: 14 pages, references added, introduction change
The Submillimeter Properties of the 1 Ms Chandra Deep Field North X-ray Sample
We present submillimeter observations for 136 of the 370 X-ray sources
detected in the 1 Ms exposure of the Chandra Deep Field North. Ten of the X-ray
sources are significantly detected in the submillimeter. The average X-ray
source in the sample has a significant 850 micron flux of 1.69+/-0.27 mJy. This
value shows little dependence on the 2-8 keV flux from 5e-16 erg/cm^2/s to
1e-14 erg/cm^2/s. The ensemble of X-ray sources contribute about 10% of the
extragalactic background light at 850 microns. The submillimeter excess is
found to be strongest in the optically faint X-ray sources that are also seen
at 20 cm, which is consistent with these X-ray sources being obscured and at
high redshift (z>1).Comment: 5 pages, submitted to The Astrophysical Journal Letter
The impact of failures and successes on affect and self-esteem in young and older adults
Little is known about the impact of success and failure events on age-related changes in affect states and, particularly, in self-esteem levels. To fill this gap in the literature, in the present study changes in affect and self-esteem in 100 young (19 - 30 years) and 102 older adults (65-81 years) were assessed after participants experienced success and failure in a demanding cognitive task. Overall, the success-failure manipulation induced changes on affect states and on state self-esteem, not on trait self-esteem. Regarding age differences, older and young adults were affected to the same extent by experiences of successes and failures. Theoretical considerations of the empirical findings are provided in the general discussion
Absolute measurement of the unresolved cosmic X-ray background in the 0.5-8 keV band with Chandra
We present the absolute measurement of the unresolved 0.5-8 keV cosmic X-ray
background (CXB) in the Chandra Deep Fields (CDFs) North and South, the longest
observations with Chandra (2 Ms and 1 Ms, respectively). We measure the
unresolved CXB intensity by extracting spectra of the sky, removing all point
and extended sources detected in the CDF. To model and subtract the
instrumental background, we use observations obtained with ACIS in stowed
position, not exposed to the sky. The unresolved signal in the 0.5-1 keV band
is dominated by diffuse Galactic and local thermal-like emission. In the 1-8
keV band, the unresolved spectrum is adequately described by a power law with a
photon index 1.5. We find unresolved CXB intensities of (1.04+/-0.14)x10^-12
ergs cm^-2 s^-1 deg^-2 for the 1-2 keV band and (3.4+/-1.7)x10^-12 ergs cm^-2
s^-1 deg^-2 for the 2-8 keV band. Our detected unresolved intensities in these
bands significantly exceed the expected flux from sources below the CDF
detection limits, if one extrapolates the logN/logS curve to zero flux. Thus
these background intensities imply either a genuine diffuse component, or a
steepening of the logN/logS curve at low fluxes, most significantly for
energies <2 keV. Adding the unresolved intensity to the total contribution from
sources detected in these fields and wider-field surveys, we obtain a total
intensity of the extragalactic CXB of (4.6+/-0.3)x10^-12 ergs cm^-2 s^-1 deg^-2
for 1-2 keV and (1.7+/-0.2)x10^-11 ergs cm^-2 s^-1 deg^-2 for 2-8 keV. These
totals correspond to a CXB power law normalization (for photon index 1.4) of
10.9 photons cm^-2 s^-1 keV^-1 sr^-1 at 1 keV. This corresponds to resolved
fracations of 77+/-3% and 80+/-8% for 1-2 and 2-8 keV, respectively.Comment: 23 emulateapj pages, accepted for publication in ApJ. Minor
revisions, most notably a new summary of the error analysi
Recommended from our members
Epidemic dynamics of respiratory syncytial virus in current and future climates.
A key question for infectious disease dynamics is the impact of the climate on future burden. Here, we evaluate the climate drivers of respiratory syncytial virus (RSV), an important determinant of disease in young children. We combine a dataset of county-level observations from the US with state-level observations from Mexico, spanning much of the global range of climatological conditions. Using a combination of nonlinear epidemic models with statistical techniques, we find consistent patterns of climate drivers at a continental scale explaining latitudinal differences in the dynamics and timing of local epidemics. Strikingly, estimated effects of precipitation and humidity on transmission mirror prior results for influenza. We couple our model with projections for future climate, to show that temperature-driven increases to humidity may lead to a northward shift in the dynamic patterns observed and that the likelihood of severe outbreaks of RSV hinges on projections for extreme rainfall
- …