44 research outputs found
Social Perception and Supply of Ecosystem Services — A Watershed Approach for Carbon Related Ecosystem Services
Additional information is available at the end of the chapter 1
Ecosystem Services across US Watersheds: A Meta-Analysis of Studies 2000–2014
Despite increasing awareness on the importance of rivers in maintaining human wellbeing, there has not been a comprehensive inventory of watershed-scale ecosystem services across the USA. Here, we analyze and summarize the scientific literature within the context of the supply and demand for ecosystem services across 18 major watersheds of the continental US. We reviewed 305 articles and found that 68 provided information on both the biophysical delivery (supply) and the sociocultural and economic values (demand) of ecosystem services. Maintaining populations and habitats, water filtration, and nutrient sequestration/storage were the most extensively assessed services, while educational and aesthetic values were the least frequently studied. Biophysical assessments were the most frequent valuation followed by economic approaches. The majority of the studies were conducted in the eastern US, while the region least studied was the southwest. In addition to identifying the knowledge gaps in watershed-scale ecosystem services, we highlight the need for a common framework for assessing ecosystem services that includes both the assessment of the supply and demand of ecosystem services provided by US watersheds. There is an urgent need to incorporate the role that cultural services and values can play in water resources management and planning in the USA
Freshwater mussel conservation: A global horizon scan of emerging threats and opportunities
We identified 14 emerging and poorly understood threats and opportunities for addressing the global conservation of freshwater mussels over the next decade. A panel of 17 researchers and stakeholders from six continents submitted a total of 56 topics that were ranked and prioritized using a consensus-building Delphi technique. Our 14 priority topics fell into five broad themes (autecology, population dynamics, global stressors, global diversity, and ecosystem services) and included understanding diets throughout mussel life history; identifying the drivers of population declines; defining metrics for quantifying mussel health; assessing the role of predators, parasites, and disease; informed guidance on the risks and opportunities for captive breeding and translocations; the loss of mussel-fish co-evolutionary relationships; assessing the effects of increasing surface water changes; understanding the effects of sand and aggregate mining; understanding the effects of drug pollution and other emerging contaminants such as nanomaterials; appreciating the threats and opportunities arising from river restoration; conserving understudied hotspots by building local capacity through the principles of decolonization; identifying appropriate taxonomic units for conservation; improved quantification of the ecosystem services provided by mussels; and understanding how many mussels are enough to provide these services. Solutions for addressing the topics ranged from ecological studies to technological advances and socio-political engagement. Prioritization of our topics can help to drive a proactive approach to the conservation of this declining group which provides a multitude of important ecosystem services.This publication is based upon work from COST Action CA18239, supported by COST (European Cooperation in Science and Technology). DCA was supported by Corpus Christi College and a Dawson Fellowship at St. Catharine's College, Cambridge. MLL was supported by FCT-Fundacao para a Ciencia e a Tecnologia (2020.03608.CEECIND). ISO was supported by a Whitten Studentship. INB was supported by the Russian Science Foundation (grant no. 21-17-00126). YVB was supported by RSF project no. 21-14-00092. KD was supported by the Czech Science Foundation (19-05510 S). TZ was supported by statutory funds of IOP PAN. MK was supported by funding through the Australian National Environmental Science Program. For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from this submission
Research priorities for freshwater mussel conservation assessment
Freshwater mussels are declining globally, and effective conservation requires prioritizing research and actions to identify and mitigate threats impacting mussel species. Conservation priorities vary widely, ranging from preventing imminent extinction to maintaining abundant populations. Here, we develop a portfolio of priority research topics for freshwater mussel conservation assessment. To address these topics, we group research priorities into two categories: intrinsic or extrinsic factors. Intrinsic factors are indicators of organismal or population status, while extrinsic factors encompass environmental variables and threats. An understanding of intrinsic factors is useful in monitoring, and of extrinsic factors are important to understand ongoing and potential impacts on conservation status. This dual approach can guide conservation status assessments prior to the establishment of priority species and implementation of conservation management actions.NF-R was supported by a post-doctoral fellowship (Xunta de Galicia Plan I2C 2017-2020, 09.40.561B.444.0) from the government of the autonomous community of Galicia. BY was supported by the Ministry of Science and Higher Education (no. 0409-2016-0022). DLS was supported by the G. E. Hutchinson Chair at the Cary Institute of Ecosystem Studies. AO was supported by the Russian Foundation for Basic Research (no. 17-44-290016). SV was funded by European Investment Funds by FEDER/COMPETE/POCI- Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT-Portuguese Foundation for Science and Technology, under the project UID/AGR/04033/2013. NF-R is very grateful to the University of Oklahoma Biological Survey for providing space to work in the U.S. and especially to Vaughn Lab members. Authors are very grateful to Akimasa Hattori, Allan K. Smith, Andrew Roberts, Daniel Graf, David Stagliano, David T. Zanatta, Dirk Van Damme, Ekaterina Konopleva, Emilie Blevins, Ethan Nedeau, Frankie Thielen, Gregory Cope, Heinrich Vicentini, Hugh Jones, Htilya Sereflisan, Ilya Vikhrev, John Pfeiffer, Karen Mock, Mary Seddon, Katharina Stockl, Katarzyna Zajac, Kengo Ito, Marie Capoulade, Marko Kangas, Michael Lange, Mike Davis, Pirkko-Liisa Luhta, Sarina Jepsen, Somsak Panha, Stephen McMurray, G. Thomas Watters, Wendell R. Haag, and Yoko Inui for their valuable contribution in the initial selection and description of extrinsic and intrinsic factors. We also wish to thank Dr. Amanda Bates, Chase Smith, and two anonymous reviewers for comments on earlier drafts of this manuscript. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government
White-tailed deer consumption of emergent macrophytes mediates aquatic-to-terrestrial nutrient flows
1. Trophic interactions between mobile animals and their food sources often vector resource flows across ecosystem boundaries. However, the quality and quantity of such ecological subsidies may be altered by indirect interactions between seemingly unconnected taxa. We studied whether emergent macrophytes growing at the aquatic–terrestrial interface facilitate multi‐step aquatic‐to‐terrestrial resource flows between streams and terrestrial herbivores. We also explored whether aquatic animal aggregations indirectly promote such resource flows by creating biogeochemical hotspots of nutrient cycling and availability. 2. We tested whether white‐tailed deer (Odocoileus virginianus) in eastern North America vector nutrient fluxes from streams to terrestrial ecosystems by consuming emergent macrophytes (Justicia americana) using isotope and nutrient analyses of fecal samples and motion‐sensing cameras. We also tested whether mussel‐generated biogeochemical hotspots might promote such fluxes by surveying the density and nutrient stoichiometry of J. americana beds growing in association with variable densities of freshwater mussels (Bivalvia: Unionoida). 3. Fecal samples from riparian deer had 3% lower C:N and 20% lower C:P ratios than those in upland habitats. C and N isotopes suggested riparian deer ate both terrestrial and aquatic (J. americana) vegetation, whereas upland deer ate more terrestrial foods. Motion‐sensing cameras showed deer eating J. americana more than twice as frequently at mussel‐generated hotspots than non‐mussel sites. However, mussels were not associated with variation in J. americana growth or N and P content—although N isotopes in J. americana leaves did suggest assimilation of animal‐derived nutrients. 4. Our findings suggest that white‐tailed deer may conduct significant transfers of aquatic‐derived nutrients into terrestrial habitats when they feed on macrophytes and defecate on land. Whether aquatic animal aggregations promote such resource flows by creating biogeochemical hotspots remains unresolved, but the nearly global distributions of the deer family (Cervidae) and of macrophytes suggest that cervid‐driven aquatic‐to‐terrestrial nutrient flows may be widespread and ecologically important
Appendix D. Summary of stepwise multiple regression analysis of net change in substrate erosion (g) using a suite of burrowing variables.
Summary of stepwise multiple regression analysis of net change in substrate erosion (g) using a suite of burrowing variables