185 research outputs found

    Hepatoblast and mesenchymal cell-specific gene-expression in fetal rat liver and in cultured fetal rat liver cells

    Get PDF
    The aim of this study was to determine whether passaged rat fetal liver cells are functional hepatoblasts. Hepatocyte/hepatoblast- and liver myofibroblast-gene-expressions were studied in adult and fetal rat liver tissues as well as in primary and passaged cultures of isolated rat fetal liver cells at both the mRNA and protein level. Desmin- and Alpha-Smooth Muscle Actin (SMA)-positive cells were located in the walls of liver vessels, whereas Desmin-positive/SMA-negative cells were distributed within the liver parenchyma. Primary cultures contained Prox1-positive hepatoblasts, Desmin/SMA-positive myofibroblasts and only a few Desmin-positive/SMA-negative cells. Albumin and alpha-fetoprotein (AFP) could be detected in the primary cultures and to a lesser extent after the first passage. The number of Desmin-positive/SMA-negative cells decreased with successive passage, such that after the second passage, only Desmin/SMA-positive cells could be detected. SMA-gene-expression increased during the passages, suggesting that myofibroblasts become the major cell population of fetal liver cell cultures over time. This observation needs to be taken into account, should passaged fetal liver cells be used for liver cell transplantation. Moreover it contradicts the concept of epithelial-mesenchymal transformation and suggests rather that selective overgrowth of mesenchymal cells occurs in culture

    Simulated Microgravity Compromises Mouse Oocyte Maturation by Disrupting Meiotic Spindle Organization and Inducing Cytoplasmic Blebbing

    Get PDF
    In the present study, we discovered that mouse oocyte maturation was inhibited by simulated microgravity via disturbing spindle organization. We cultured mouse oocytes under microgravity condition simulated by NASA's rotary cell culture system, examined the maturation rate and observed the spindle morphology (organization of cytoskeleton) during the mouse oocytes meiotic maturation. While the rate of germinal vesicle breakdown did not differ between 1 g gravity and simulated microgravity, rate of oocyte maturation decreased significantly in simulated microgravity. The rate of maturation was 8.94% in simulated microgravity and was 73.0% in 1 g gravity. The results show that the maturation of mouse oocytes in vitro was inhibited by the simulated microgravity. The spindle morphology observation shows that the microtubules and chromosomes can not form a complete spindle during oocyte meiotic maturation under simulated microgravity. And the disorder of γ-tubulin may partially result in disorganization of microtubules under simulated microgravity. These observations suggest that the meiotic spindle organization is gravity dependent. Although the spindle organization was disrupted by simulated microgravity, the function and organization of microfilaments were not pronouncedly affected by simulated microgravity. And we found that simulated microgravity induced oocytes cytoplasmic blebbing via an unknown mechanism. Transmission electron microscope detection showed that the components of the blebs were identified with the cytoplasm. Collectively, these results indicated that the simulated microgravity inhibits mouse oocyte maturation via disturbing spindle organization and inducing cytoplasmic blebbing

    Polygenic type 2 diabetes prediction at the limit of common variant detection.

    Get PDF
    Genome-wide association studies (GWAS) may have reached their limit of detecting common type 2 diabetes (T2D)-associated genetic variation. We evaluated the performance of current polygenic T2D prediction. Using data from the Framingham Offspring (FOS) and the Coronary Artery Risk Development in Young Adults (CARDIA) studies, we tested three hypotheses: 1) a 62-locus genotype risk score (GRSt) improves T2D prediction compared with previous less inclusive GRSt; 2) separate GRS for \u3b2-cell (GRS\u3b2) and insulin resistance (GRSIR) independently predict T2D; and 3) the relationships between T2D and GRSt, GRS\u3b2, or GRSIR do not differ between blacks and whites. Among 1,650 young white adults in CARDIA, 820 young black adults in CARDIA, and 3,471 white middle-aged adults in FOS, cumulative T2D incidence was 5.9%, 14.4%, and 12.9%, respectively, over 25 years. The 62-locus GRSt was significantly associated with incident T2D in all three groups. In FOS but not CARDIA, the 62-locus GRSt improved the model C statistic (0.698 and 0.726 for models without and with GRSt, respectively; P < 0.001) but did not materially improve risk reclassification in either study. Results were similar among blacks compared with whites. The GRS\u3b2 but not GRSIR predicted incident T2D among FOS and CARDIA whites. At the end of the era of common variant discovery for T2D, polygenic scores can predict T2D in whites and blacks but do not outperform clinical models. Further optimization of polygenic prediction may require novel analytic methods, including less common as well as functional variants

    The MedSeq Project: a randomized trial of integrating whole genome sequencing into clinical medicine

    Get PDF
    Background: Whole genome sequencing (WGS) is already being used in certain clinical and research settings, but its impact on patient well-being, health-care utilization, and clinical decision-making remains largely unstudied. It is also unknown how best to communicate sequencing results to physicians and patients to improve health. We describe the design of the MedSeq Project: the first randomized trials of WGS in clinical care. Methods/Design This pair of randomized controlled trials compares WGS to standard of care in two clinical contexts: (a) disease-specific genomic medicine in a cardiomyopathy clinic and (b) general genomic medicine in primary care. We are recruiting 8 to 12 cardiologists, 8 to 12 primary care physicians, and approximately 200 of their patients. Patient participants in both the cardiology and primary care trials are randomly assigned to receive a family history assessment with or without WGS. Our laboratory delivers a genome report to physician participants that balances the needs to enhance understandability of genomic information and to convey its complexity. We provide an educational curriculum for physician participants and offer them a hotline to genetics professionals for guidance in interpreting and managing their patients’ genome reports. Using varied data sources, including surveys, semi-structured interviews, and review of clinical data, we measure the attitudes, behaviors and outcomes of physician and patient participants at multiple time points before and after the disclosure of these results. Discussion The impact of emerging sequencing technologies on patient care is unclear. We have designed a process of interpreting WGS results and delivering them to physicians in a way that anticipates how we envision genomic medicine will evolve in the near future. That is, our WGS report provides clinically relevant information while communicating the complexity and uncertainty of WGS results to physicians and, through physicians, to their patients. This project will not only illuminate the impact of integrating genomic medicine into the clinical care of patients but also inform the design of future studies. Trial registration ClinicalTrials.gov identifier NCT0173656

    Returning Individual Research Results from Digital Phenotyping in Psychiatry

    Get PDF
    Psychiatry is rapidly adopting digital phenotyping and artificial intelligence/machine learning tools to study mental illness based on tracking participants’ locations, online activity, phone and text message usage, heart rate, sleep, physical activity, and more. Existing ethical frameworks for return of individual research results (IRRs) are inadequate to guide researchers for when, if, and how to return this unprecedented number of potentially sensitive results about each participant’s real-world behavior. To address this gap, we convened an interdisciplinary expert working group, supported by a National Institute of Mental Health grant. Building on established guidelines and the emerging norm of returning results in participant-centered research, we present a novel framework specific to the ethical, legal, and social implications of returning IRRs in digital phenotyping research. Our framework offers researchers, clinicians, and Institutional Review Boards (IRBs) urgently needed guidance, and the principles developed here in the context of psychiatry will be readily adaptable to other therapeutic areas
    corecore