6,633 research outputs found
Resonant Interactions Between Protons and Oblique Alfv\'en/Ion-Cyclotron Waves
Resonant interactions between ions and Alfv\'en/ion-cyclotron (A/IC) waves
may play an important role in the heating and acceleration of the fast solar
wind. Although such interactions have been studied extensively for "parallel"
waves, whose wave vectors are aligned with the background magnetic
field , much less is known about interactions between ions and
oblique A/IC waves, for which the angle between and is nonzero. In this paper, we present new numerical results on resonant
cyclotron interactions between protons and oblique A/IC waves in collisionless
low-beta plasmas such as the solar corona. We find that if some mechanism
generates oblique high-frequency A/IC waves, then these waves initially modify
the proton distribution function in such a way that it becomes unstable to
parallel waves. Parallel waves are then amplified to the point that they
dominate the wave energy at the large parallel wave numbers at which the waves
resonate with the particles. Pitch-angle scattering by these waves then causes
the plasma to evolve towards a state in which the proton distribution is
constant along a particular set of nested "scattering surfaces" in velocity
space, whose shapes have been calculated previously. As the distribution
function approaches this state, the imaginary part of the frequency of parallel
A/IC waves drops continuously towards zero, but oblique waves continue to
undergo cyclotron damping while simultaneously causing protons to diffuse
across these kinetic shells to higher energies. We conclude that oblique A/IC
waves can be more effective at heating protons than parallel A/IC waves,
because for oblique waves the plasma does not relax towards a state in which
proton damping of oblique A/IC waves ceases
Molecular gas associated with IRAS 10361-5830
We analyze the distribution of the molecular gas and the dust in the
molecular clump linked to IRAS 10361-5830, located in the environs of the
bubble-shaped HII region Gum 31 in the Carina region, with the aim of
determining the main parameters of the associated material and investigating
the evolutionary state of the young stellar objects identified there.
Using the APEX telescope, we mapped the molecular emission in the J=3-2
transition of three CO isotopologues, 12CO, 13CO and C18O, over a 1.5' x 1.5'
region around the IRAS position. We also observed the high density tracers CS
and HCO+ toward the source. The cold dust distribution was analyzed using
submillimeter continuum data at 870 \mu\ obtained with the APEX telescope.
Complementary IR and radio data at different wavelengths were used to complete
the study of the ISM.
The molecular gas distribution reveals a cavity and a shell-like structure of
~ 0.32 pc in radius centered at the position of the IRAS source, with some
young stellar objects (YSOs) projected onto the cavity. The total molecular
mass in the shell and the mean H volume density are ~ 40 solar masses and
~(1-2) x 10 cm, respectively. The cold dust counterpart of the
molecular shell has been detected in the far-IR at 870 \mu\ and in Herschel
data at 350 \mu. Weak extended emission at 24 \mu\ from warm dust is projected
onto the cavity, as well as weak radio continuum emission.
A comparison of the distribution of cold and warm dust, and molecular and
ionized gas allows us to conclude that a compact HII region has developed in
the molecular clump, indicating that this is an area of recent massive star
formation. Probable exciting sources capable of creating the compact HII region
are investigated. The 2MASS source 10380461-5846233 (MSX G286.3773-00.2563)
seems to be responsible for the formation of the HII region.Comment: Accepted in A&A. 11 pages, 10 Postscript figure
Source amplitudes for active exterior cloaking
The active cloak comprises a discrete set of multipole sources that
destructively interfere with an incident time harmonic scalar wave to produce
zero total field over a finite spatial region. For a given number of sources
and their positions in two dimensions it is shown that the multipole amplitudes
can be expressed as infinite sums of the coefficients of the incident wave
decomposed into regular Bessel functions. The field generated by the active
sources vanishes in the infinite region exterior to a set of circles defined by
the relative positions of the sources. The results provide a direct solution to
the inverse problem of determining the source amplitudes. They also define a
broad class of non-radiating discrete sources.Comment: 21 pages, 17 figure
The Calcium Triplet metallicity calibration for galactic bulge stars
We present a new calibration of the Calcium II Triplet equivalent widths
versus [Fe/H], constructed upon K giant stars in the Galactic bulge. This
calibration will be used to derive iron abundances for the targets of the GIBS
survey, and in general it is especially suited for solar and supersolar
metallicity giants, typical of external massive galaxies. About 150 bulge K
giants were observed with the GIRAFFE spectrograph at VLT, both at resolution
R~20,000 and at R~6,000. In the first case, the spectra allowed us to perform
direct determination of Fe abundances from several unblended Fe lines, deriving
what we call here high resolution [Fe/H] measurements. The low resolution
spectra allowed us to measure equivalent widths of the two strongest lines of
the near infrared Calcium II triplet at 8542 and 8662 A. By comparing the two
measurements we derived a relation between Calcium equivalent widths and [Fe/H]
that is linear over the metallicity range probed here, -1<[Fe/H]<+0.7. By
adding a small second order correction, based on literature globular cluster
data, we derived the unique calibration equation [Fe/H], with a rms dispersion of 0.197 dex, valid across the
whole metallicity range -2.3<[Fe/H]<+0.7.Comment: Accepted for publication in A&
Effects of lattice distortion and Jahn–Teller coupling on the magnetoresistance of La0.7Ca0.3MnO3 and La0.5Ca0.5CoO3 epitaxial films
Studies of La0.7Ca0.3MnO3 epitaxial films on substrates with a range of lattice constants reveal two dominant contributions to the occurrence of colossal negative magnetoresistance (CMR) in these manganites: at high temperatures (T → TC, TC being the Curie temperature), the magnetotransport properties are predominantly determined by the conduction of lattice polarons, while at low temperatures (T ≪ TC/, the residual negative magnetoresistance is correlated with the substrate-induced lattice distortion which incurs excess magnetic domain wall scattering. The importance of lattice polaron conduction associated with the presence of Jahn–Teller coupling in the manganites is further verified by comparing the manganites with epitaxial films of another ferromagnetic perovskite, La0.5Ca0.5CoO3. Regardless of the differences in the substrate-induced lattice distortion, the cobaltite films exhibit much smaller negative magnetoresistance, which may be attributed to the absence of Jahn–Teller coupling and the high electron mobility that prevents the formation of lattice polarons. We therefore suggest that lattice polaron conduction associated with the Jahn–Teller coupling is essential for the occurrence of CMR, and that lattice distortion further enhances the CMR effects in the manganites
Hyperelastic cloaking theory: Transformation elasticity with pre-stressed solids
Transformation elasticity, by analogy with transformation acoustics and
optics, converts material domains without altering wave properties, thereby
enabling cloaking and related effects. By noting the similarity between
transformation elasticity and the theory of incremental motion superimposed on
finite pre-strain it is shown that the constitutive parameters of
transformation elasticity correspond to the density and moduli of
small-on-large theory. The formal equivalence indicates that transformation
elasticity can be achieved by selecting a particular finite (hyperelastic)
strain energy function, which for isotropic elasticity is semilinear strain
energy. The associated elastic transformation is restricted by the requirement
of statically equilibrated pre-stress. This constraint can be cast as \tr
{\mathbf F} = constant, where is the deformation gradient,
subject to symmetry constraints, and its consequences are explored both
analytically and through numerical examples of cloaking of anti-plane and
in-plane wave motion.Comment: 20 pages, 5 figure
How light can the lightest neutralino be?
In this talk we summarize previous work on mass bounds of a light neutralino
in the Minimal Supersymmetric Standard Model. We show that without the GUT
relation between the gaugino mass parameters M_1 and M_2, the mass of the
lightest neutralino is essentially unconstrained by collider bounds and
precision observables. We conclude by considering also the astrophysics and
cosmology of a light neutralino.Comment: 6 pages, 3 figures, to appear in the proceedings of the 16th
International Symposium on Particles, Strings and Cosmology (PASCOS2010),
Valencia (Spain), July 19th - 23rd, 201
Toward Understanding Personalities Working on Computer: A Preliminary Study Focusing on Collusion/Plagiarism
Ample research has been carried out in the area of collusion, plagiarism and e-learning. Collusion is a form of
active cheating where two or more parties secretly or illegally corporate. Collusion is at the root of common
knowledge plagiarism. While plagiarism requires two or more entities to compare, collusion can be determined
in isolation. It is also possible that collusion do not lead to positive plagiarism checks. It is therefore the aims
of this preliminary study to: (i) identify the factors responsible for collusion in e-learning (ii) determine the
prominent factor that is representative of collusion and (iii) through user behaviour including, but not limited
to, application switching time, determine collusion. We claim that user computer activities and application
processes can help understand user behaviour during assessment task. It is on this premise that we develop a
machine learning model to predict collusion through user behaviour during assessment tas
Enhancement of near-cloaking. Part II: the Helmholtz equation
The aim of this paper is to extend the method of improving cloaking
structures in the conductivity to scattering problems. We construct very
effective near-cloaking structures for the scattering problem at a fixed
frequency. These new structures are, before using the transformation optics,
layered structures and are designed so that their first scattering coefficients
vanish. Inside the cloaking region, any target has near-zero scattering cross
section for a band of frequencies. We analytically show that our new
construction significantly enhances the cloaking effect for the Helmholtz
equation.Comment: 16pages, 12 fugure
Effective gravity from a quantum gauge theory in Euclidean space-time
We consider a gauge theory in an Euclidean -dimensional
space-time, which is known to be renormalizable to all orders in perturbation
theory for . Then, with the help of a space-time representation of
the gauge group, the gauge theory is mapped into a curved space-time with
linear connection. Further, in that mapping the gauge field plays the role of
the linear connection of the curved space-time and an effective metric tensor
arises naturally from the mapping. The obtained action, being quadratic in the
Riemann-Christoffel tensor, at a first sight, spoils a gravity interpretation
of the model. Thus, we provide a sketch of a mechanism that breaks the
color invariance and generates the Einstein-Hilbert term, as well as a
cosmological constant term, allowing an interpretation of the model as a
modified gravity in the Palatini formalism. In that sense, gravity can be
visualized as an effective classical theory, originated from a well defined
quantum gauge theory. We also show that, in the four dimensional case, two
possibilities for particular solutions of the field equations are the de Sitter
and Anti de Sitter space-times.Comment: 20 pages; Final version accepted for publication in Class.Quant.Gra
- …