506 research outputs found

    Brane World in a Topological Black Hole Bulk

    Get PDF
    We consider a static brane in the background of a topological black hole, in arbitrary dimensions. For hyperbolic horizons, we find a solution only when the black hole mass assumes its minimum negative value. In this case, the tension of the brane vanishes, and the brane position coincides with the location of the horizon. For an elliptic horizon, we show that the massless mode of Randall-Sundrum is recovered in the limit of large black hole mass.Comment: Latex, 8 pages, v2: Additional references, to appear in MPL

    Quantum fields in gravity

    Full text link
    We give a brief description of some compelling connections between general relativity and thermodynamics through i) the semi-classical tunnelling method(s) and ii) the field-theoretical modelling of Unruh-DeWitt detectors. In both approaches it is possible to interpret some quantities in a thermodynamical frame.Comment: 4 pages, no figures, contribution to the proceedings of the conference "Relativity and Gravitation - 100 years after Einstein in Prague

    On the Unruh effect in de Sitter space

    Full text link
    We give an interpretation of the temperature in de Sitter universe in terms of a dynamical Unruh effect associated with the Hubble sphere. As with the quantum noise perceived by a uniformly accelerated observer in static space-times, observers endowed with a proper motion can in principle detect the effect. In particular, we study a "Kodama observer" as a two-field Unruh detector for which we show the effect is approximately thermal. We also estimate the back-reaction of the emitted radiation and find trajectories associated with the Kodama vector fields are stable.Comment: 8 pages; corrected typos; sections structure revise

    Hawking Radiation as Tunneling for Extremal and Rotating Black Holes

    Full text link
    The issue concerning semi-classical methods recently developed in deriving the conditions for Hawking radiation as tunneling, is revisited and applied also to rotating black hole solutions as well as to the extremal cases. It is noticed how the tunneling method fixes the temperature of extremal black hole to be zero, unlike the Euclidean regularity method that allows an arbitrary compactification period. A comparison with other approaches is presented.Comment: 17 pages, Latex document, typos corrected, four more references, improved discussion in section

    On the Hawking radiation as tunneling for a class of dynamical black holes

    Full text link
    The instability against emission of massless particles by the trapping horizon of an evolving black hole is analyzed with the use of the Hamilton-Jacobi method. The method automatically selects one special expression for the surface gravity of a changing horizon. Indeed, the strength of the horizon singularity turns out to be governed by the surface gravity as was defined a decade ago by Hayward using Kodama's theory of spherically symmetric gravitational fields. The theory also applies to point masses embedded in an expanding universe, were the surface gravity is still related to Kodama-Hayward theory. As a bonus of the tunneling method, we gain the insight that the surface gravity still defines a temperature parameter as long as the evolution is sufficiently slow that the black hole pass through a sequence of quasi-equilibrium states.Comment: added references for section 1, corrected typos, some improvement in notatio

    Tunnelling Methods and Hawking's radiation: achievements and prospects

    Full text link
    The aim of this work is to review the tunnelling method as an alternative description of the quantum radiation from black holes and cosmological horizons. The method is first formulated and discussed for the case of stationary black holes, then a foundation is provided in terms of analytic continuation throughout complex space-time. The two principal implementations of the tunnelling approach, which are the null geodesic method and the Hamilton-Jacobi method, are shown to be equivalent in the stationary case. The Hamilton-Jacobi method is then extended to cover spherically symmetric dynamical black holes, cosmological horizons and naked singularities. Prospects and achievements are discussed in the conclusions.Comment: Topical Review commissioned and accepted for publication by "Classical and Quantum Gravity". 101 pages; 6 figure

    One-loop f(R) gravity in de Sitter universe

    Full text link
    Motivated by the dark energy issue, the one-loop quantization approach for a family of relativistic cosmological theories is discussed in some detail. Specifically, general f(R)f(R) gravity at the one-loop level in a de Sitter universe is investigated, extending a similar program developed for the case of pure Einstein gravity. Using generalized zeta regularization, the one-loop effective action is explicitly obtained off-shell, what allows to study in detail the possibility of (de)stabilization of the de Sitter background by quantum effects. The one-loop effective action maybe useful also for the study of constant curvature black hole nucleation rate and it provides the plausible way of resolving the cosmological constant problem.Comment: 25 pages, Latex file. Discussion enlarged, new references added. Version accepted in JCA

    Non-Existence of Black Holes in Certain Λ<0\Lambda<0 Spacetimes

    Full text link
    Assuming certain asymptotic conditions, we prove a general theorem on the non-existence of static regular (i.e., nondegenerate) black holes in spacetimes with a negative cosmological constant, given that the fundamental group of space is infinite. We use this to rule out the existence of regular negative mass AdS black holes with Ricci flat scri. For any mass, we also rule out a class of conformally compactifiable static black holes whose conformal infinity has positive scalar curvature and infinite fundamental group, subject to our asymptotic conditions. In a limited, but important, special case our result adds new support to the AdS/CFT inspired positive mass conjecture of Horowitz and Myers.Comment: 17 pages, Latex. Typos corrected, minor changes to the text. Accepted for publication in Classical and Quantum Gravit
    • …
    corecore