41 research outputs found
Polymerization of sterically hindered a-olefins with single-site group 4 metal catalyst precursors
A variety of group 4 metal catalytic systems (C2-symmetric {EBTHI}-, {SBI}-type zirconocene complexes (C2-1–4); C1-symmetric (C1-5–8) and Cs-symmetric (Cs-9) {Cp/Flu}-type zirconocene complexes; Cp*2ZrCl2 (Cp* 2-10)), half-metallocene complexes (CpTiCl3, HM-11), constrained-geometry (CGC-12) titanium catalysts) and post-metallocene catalysts (Dow’s ortho-metallated amido-pyridino hafnium complex (PM-13)) have been screened in the polymerization of the sterically demanding 3-methylbut-1-ene (3MB1) and vinylcyclohexane (VCH). All systems proved to be sluggishly active under regular conditions (toluene, 20°C; MAO as cocatalyst) towards 3MB1, with productivities in the range 0–15 kg.mol–1.h–1. Higher productivities (up to 75 kg.mol–1.h–1) were obtained in the polymerization of VCH with C1-symmetric metallocene catalysts under the same conditions, while Cs-symmetric systems were found to be completely inactive. For both 3MB1 and VCH, under all conditions tested, the most productive catalyst appeared to be Dow’s post-metallocene system PM-13/MAO. Optimization of the polymerization conditions led to a significant enhancement of the productivities of this catalyst system towards both 3MB1 and VCH up to 390 and 760 kg.mol–1.h–1, respectively (Tpolym = 70°C). 13C NMR spectroscopy studies revealed that all isolated P(3MB1) and P(VCH) polymers were isotactic, regardless the nature/symmetry of the (pre)catalyst used. The nature of the chain-end groups in P(3MB1) is consistent with two different chaintermination mechanisms, namely b-H elimination/transfer-to-monomer for C2-1/MAO and chain-transfer to Me3Al for PM-13/MAO systems, respectively. For polymerization of VCH with PM-13/MAO at 70°C, b-H elimination / transfer-to-monomer appeared to be the main chain termination reaction
Hierarchical macro-mesoporous oxides and carbons: towards new and more efficient hierarchical catalysis
peer reviewe
Quality control for Ziegler-Natta catalysis via spectroscopic fingerprinting
Commercial olefin polymerization catalysts are typically produced at a manufacturing site before transport to production facilities for storage and eventual use. During transport and storage, catalysts can deteriorate resulting in decreased catalytic performance due to contact with environmental factors. In this work, a spectroscopic toolbox was developed for quality assurance purposes of a third generation Ziegler-Natta catalyst for ethylene polymerization. A pre-activated, industrial Ziegler-Natta catalyst was exposed singly to heat, dry air, and moisture to study the specific environmental factors. Activity tests were performed with the polymer morphology inspected by SEM and image analysis. Catalyst characterization was conducted using Fourier Transform Infrared spectroscopy with CO and Diffuse Reflectance UV–Vis spectroscopy to relate unique spectroscopic fingerprints to different environmental effects. Reactivity towards gas-phase ethylene polymerization was tested using Diffuse Reflectance Infrared Fourier Transform spectroscopy. This work demonstrates the development of a new spectroscopic methodology useful for quality control in Ziegler-Natta catalysis