5 research outputs found

    Genetics of Cushing's Syndrome

    Full text link
    Cushing's syndrome (CS) is characterized by pathologically elevated free glucocorticoid levels. Endogenous hypercortisolism is usually due to ACTH-secreting pituitary corticotropic adenomas and less often due to ectopic ACTH-secreting neuroendocrine neoplasms or ACTH-independent adrenal cortisol hypersecretion. CS is a serious chronic disease leading to a several-fold increase in cardiovascular morbidity and mortality. Multiple genetic alterations have been described in the setting of sporadic corticotropinoma formation. Changes in the expression profiles have been demonstrated in growth factors and their receptors, cell-cycle regulators and in various genes related to hormonal gene transcription, synthesis and secretion. Sporadic adrenal adenomas and carcinomas may demonstrate dysfunction in genes such as TP53 among others. Cushing's disease can be an inherited condition also. Multiple endocrine neoplasia type 1 (MEN1) and familial isolated pituitary adenomas (FIPA) together account for 5% of pituitary adenomas. Cushing's disease occurs infrequently in an inherited setting in both of these conditions. To date only 2 cases of Cushing's disease have been described in association with mutations in AIP. One case of Cushing's disease has been reported as part of MEN4, a rare MEN1-like syndrome due to mutation in the CDKN1B gene. Carney complex (CNC) due to PRKAR1A mutations in most cases is associated with CS, mainly as a cause of bilateral adrenal hyperplasia. The cAMP signaling pathway is affected in this setting. In recent times the involvement of genes such as PDE11A, PDE8B and others have expanded the spectrum of the genetic pathophysiology of CS

    The genetics of pituitary adenomas

    Full text link
    Pituitary adenomas are one of the most frequent intracranial tumors with a prevalence of clinically-apparent tumors close to 1:1000 of the general population. They are clinically significant beause of hormone overproduction and/or tumor mass effects in addition to the need for neurosurgery medical therapies and radiotherapy. The majority of pituitary adenomas have a sporadic origin with recognized genetic mutations seldom being found; somatotropinomas are an exception, presenting frequent somatic GNAS mutations. In this and other phenotypes, tumorigenesis could possibly be explained by altered function of genes implicated in cell cycle regulation, growth factors or their receptors, cell-signaling pathways, specific hormonal factors or other molecules with still unclear mechanisms of action. Genetic changes, such as allelic loss or gene amplification, and epigenetic changes, usually by promoter methylation, have been implicated in abnormal gene expression, but alternative mechanisms may be present. Familial cases of pituitary adenomas represent 5% of all pituitary tumors. MEN1 mutations cause multiple endocrine neoplasia type 1 (MEN1), while the Carney complex (CNC) is charcaterized by mutations in the protein kinase A regulatory subunit-1alpha (PRKAR1A) gene or changes in a locus at 2p16. Recently, a MEN1-like conditions, MEN4, was found to be related to mutations in the CDKN1B gene. The clinical entity of familialt isolated pituitary adenomas (FIPA) is characterized by genetic defects in the aryl hydrocarbon receptor interacting protein (AIP) gene in about 15% of all kindreds and 50% of homogenous somatotropinoma families. Identification of familial cases of pituitary adenomas is important as these tumors may be more aggressive than their sporadic counterparts
    corecore