25 research outputs found

    Collagens as multidomain proteins.

    No full text
    International audienceThe number of proteins known to contain collagen-like triple helical domains is rapidly increasing. The functions of these domains are to provide molecular rods that separate spatially non-triple helical domains with varied properties and structures and to permit lateral interactions between molecules. Two-thirds of the amino acids of the triple helical domains have their side-chains at the surface of the protein. The triple helix is also a structure that is easily predictable from the primary structure. The structure of several recently discovered collagens are discussed in terms of domains and functions. The triple helical domains have sizes varying from 33 to over 1,000 amino acid residues. The longest uninterrupted triple helices are involved in the formation of the classical quarter-staggered fibrils. Other triple helical domains permit varied molecular aggregates. A very broad spectrum of non-triple helical or globular domains are interspersed by triple helices. Only those located at the extremities of the molecules are large in size, sometimes several hundred kDa, while the domains separating 2 triple helices are small (less than 50 amino acids) and provide the molecules with hinges, proteolytic cleavage sites or other specialized functions like a glycosaminoglycan attachment site. If the assembly of the 3 chains required for the triple helix formation can be controlled in vitro, collagen-like molecules offer an as yet unexploited potential for protein engineering.The number of proteins known to contain collagen-like triple helical domains is rapidly increasing. The functions of these domains are to provide molecular rods that separate spatially non-triple helical domains with varied properties and structures and to permit lateral interactions between molecules. Two-thirds of the amino acids of the triple helical domains have their side-chains at the surface of the protein. The triple helix is also a structure that is easily predictable from the primary structure. The structure of several recently discovered collagens are discussed in terms of domains and functions. The triple helical domains have sizes varying from 33 to over 1,000 amino acid residues. The longest uninterrupted triple helices are involved in the formation of the classical quarter-staggered fibrils. Other triple helical domains permit varied molecular aggregates. A very broad spectrum of non-triple helical or globular domains are interspersed by triple helices. Only those located at the extremities of the molecules are large in size, sometimes several hundred kDa, while the domains separating 2 triple helices are small (less than 50 amino acids) and provide the molecules with hinges, proteolytic cleavage sites or other specialized functions like a glycosaminoglycan attachment site. If the assembly of the 3 chains required for the triple helix formation can be controlled in vitro, collagen-like molecules offer an as yet unexploited potential for protein engineering

    Collagen family of proteins

    No full text
    International audienceCollagen molecules are structural macro-molecules of the extracellular matrix that include in their structure one or several domains that have a characteristic triple helical conformation. They have been classified by types that define distinct sets of polypeptide chains that can form homo- and heterotrimeric assemblies. All the collagen molecules participate in supramolecular aggregates that are stabilized in part by interactions between triple helical domains. Fourteen collagen types have been defined so far. They form a wide range of structures. Most notable are 1) fibrils that are found in most connective tissues and are made by alloys of fibrillar collagens (types I, II, III, V, and XI) and 2) sheets constituting basement membranes (type IV collagen), Descemet's membrane (type VIII collagen), worm cuticle, and organic exoskeleton of sponges. Other collagens, present in smaller quantities in tissues, play the role of connecting elements between these major structures and other tissue components. The fibril-associated collagens with interrupted triple helices (FACITs) (types IX, XII, and XIV) appear to connect fibrils to other matrix elements. Type VII collagen assemble into anchoring fibrils that bind epithelial basement membranes and entrap collagen fibrils from the underlying stroma to glue the two structures together. Type VI collagen forms thin-beaded filaments that may interact with fibrils and cells.Collagen molecules are structural macro-molecules of the extracellular matrix that include in their structure one or several domains that have a characteristic triple helical conformation. They have been classified by types that define distinct sets of polypeptide chains that can form homo- and heterotrimeric assemblies. All the collagen molecules participate in supramolecular aggregates that are stabilized in part by interactions between triple helical domains. Fourteen collagen types have been defined so far. They form a wide range of structures. Most notable are 1) fibrils that are found in most connective tissues and are made by alloys of fibrillar collagens (types I, II, III, V, and XI) and 2) sheets constituting basement membranes (type IV collagen), Descemet's membrane (type VIII collagen), worm cuticle, and organic exoskeleton of sponges. Other collagens, present in smaller quantities in tissues, play the role of connecting elements between these major structures and other tissue components. The fibril-associated collagens with interrupted triple helices (FACITs) (types IX, XII, and XIV) appear to connect fibrils to other matrix elements. Type VII collagen assemble into anchoring fibrils that bind epithelial basement membranes and entrap collagen fibrils from the underlying stroma to glue the two structures together. Type VI collagen forms thin-beaded filaments that may interact with fibrils and cells

    The complete intron/exon structure of Ephydatia mulleri fibrillar collagen gene suggests a mechanism for the evolution of an ancestral gene module.

    No full text
    International audienceWe have completed the analysis of a genomic clone, G238, that contains most of the coding region of the sponge COLF1 fibrillar collagen gene. The main triple helical domain is encoded by 31 exons. Except for the 5' junction exon and the two last 3' exons (126 and 18 base pairs), all these exons are related to a 54-bp unit and begin with an intact glycine codon. A good correlation can be made between this sponge gene and a vertebrate fibrillar collagen gene, revealing the high conservation of the members of this family during evolution. The reconstitution of an ancestral collagen gene can be made by considering all the exon/intron junctions of these genes. We suggest that such an ancestral gene arose from multiple duplications of a 54-bp exon and a (54 + 45)-bp module.We have completed the analysis of a genomic clone, G238, that contains most of the coding region of the sponge COLF1 fibrillar collagen gene. The main triple helical domain is encoded by 31 exons. Except for the 5' junction exon and the two last 3' exons (126 and 18 base pairs), all these exons are related to a 54-bp unit and begin with an intact glycine codon. A good correlation can be made between this sponge gene and a vertebrate fibrillar collagen gene, revealing the high conservation of the members of this family during evolution. The reconstitution of an ancestral collagen gene can be made by considering all the exon/intron junctions of these genes. We suggest that such an ancestral gene arose from multiple duplications of a 54-bp exon and a (54 + 45)-bp module

    Structural requirement for cell adhesion to kalinin (laminin-5).

    No full text
    International audienceLaminin-5 (kalinin) was purified from spent cell culture media (SCC25 cells) by affinity chromatography on monoclonal antibody BM165. The protein was recovered as a mixture of the typical polypeptides of 165-155, 140, and 105 kDa as judged b SDS-polyacrylamide gel electrophoresis analysis under reducing conditions. The amino acid composition of purified laminin-5 was in agreement with that compiled from the recently published cDNA sequences of the alpha 3-, beta 3-, and gamma 2-laminin chains. Moreover, the content of half-cystine residues in laminin-5 was about two-thirds that in laminin-1, which confirms the prediction of a smaller number of epidermal growth factor-like repeats in the amino-terminal portion of the three chains. The content of coiled-coil alpha-helices (27%) determined by CD spectroscopy was comparable to that reported for laminin-1, which indicates that the long arm portion of laminin-5 is equivalent to that of other laminin isoforms. The melting temperature was recorded at 72 degrees C by CD monitoring of unfolding and refolding of the coiled-coil structures during thermal denaturation and renaturation, respectively. The thermal stability of laminin-5 is therefore significantly higher than that of laminin-1 or alpha 2-chain-containing laminins, which suggests higher ionic interactions between the three polypeptide chains of laminin-5. Cell adhesion-promoting activity of laminin-5 was found to be strictly and entirely dependent on the presence of coiled-coil structures. It decreased gradually after heat denaturation of the protein above 65 degrees C and was totally abrogated at 75 degrees C. This is in contrast to laminin-1, which contains both conformation-dependent and -independent cell-binding sites on the long and short arm domains, respectively.Laminin-5 (kalinin) was purified from spent cell culture media (SCC25 cells) by affinity chromatography on monoclonal antibody BM165. The protein was recovered as a mixture of the typical polypeptides of 165-155, 140, and 105 kDa as judged b SDS-polyacrylamide gel electrophoresis analysis under reducing conditions. The amino acid composition of purified laminin-5 was in agreement with that compiled from the recently published cDNA sequences of the alpha 3-, beta 3-, and gamma 2-laminin chains. Moreover, the content of half-cystine residues in laminin-5 was about two-thirds that in laminin-1, which confirms the prediction of a smaller number of epidermal growth factor-like repeats in the amino-terminal portion of the three chains. The content of coiled-coil alpha-helices (27%) determined by CD spectroscopy was comparable to that reported for laminin-1, which indicates that the long arm portion of laminin-5 is equivalent to that of other laminin isoforms. The melting temperature was recorded at 72 degrees C by CD monitoring of unfolding and refolding of the coiled-coil structures during thermal denaturation and renaturation, respectively. The thermal stability of laminin-5 is therefore significantly higher than that of laminin-1 or alpha 2-chain-containing laminins, which suggests higher ionic interactions between the three polypeptide chains of laminin-5. Cell adhesion-promoting activity of laminin-5 was found to be strictly and entirely dependent on the presence of coiled-coil structures. It decreased gradually after heat denaturation of the protein above 65 degrees C and was totally abrogated at 75 degrees C. This is in contrast to laminin-1, which contains both conformation-dependent and -independent cell-binding sites on the long and short arm domains, respectively

    Characterization of the interactions of type XII collagen with two small proteoglycans from fetal bovine tendon, decorin and fibromodulin.

    No full text
    International audienceIn addition to the major collagens, such as type I or type II, connective tissues contain a number of less abundant collagens and proteoglycans, whose association contributes to the different properties of the tissues. Type XII and type XIV collagens have been described in soft connective tissues, and type XIV collagen has been shown to interact specifically with decorin through its glycosaminoglycan chain (Font et al., J. Biol. Chem. 268, 25015-25018, 1993). Interactions between these collagens and the small proteoglycans have been characterized further by studying the binding of type XII collagen to decorin by solid phase assays. Our results show a saturable binding of the proteoglycan through its glycosaminoglycan chain to type XII collagen, which does not seem to involve the large non-collagenous NC3 domain of the molecule. This interaction is strongly inhibited by heparin. Furthermore, we report that another small proteoglycan, fibromodulin, isolated from tendon under non-denaturing conditions, is able to bind to type XII collagen. This interaction has been characterized and, unlike that observed with decorin, type XII collagen-fibromodulin interaction seems to take place with the core protein of the proteoglycan. In addition, we report that type XII-type I collagen interactions are not necessarily mediated by decorin as previously suggested.In addition to the major collagens, such as type I or type II, connective tissues contain a number of less abundant collagens and proteoglycans, whose association contributes to the different properties of the tissues. Type XII and type XIV collagens have been described in soft connective tissues, and type XIV collagen has been shown to interact specifically with decorin through its glycosaminoglycan chain (Font et al., J. Biol. Chem. 268, 25015-25018, 1993). Interactions between these collagens and the small proteoglycans have been characterized further by studying the binding of type XII collagen to decorin by solid phase assays. Our results show a saturable binding of the proteoglycan through its glycosaminoglycan chain to type XII collagen, which does not seem to involve the large non-collagenous NC3 domain of the molecule. This interaction is strongly inhibited by heparin. Furthermore, we report that another small proteoglycan, fibromodulin, isolated from tendon under non-denaturing conditions, is able to bind to type XII collagen. This interaction has been characterized and, unlike that observed with decorin, type XII collagen-fibromodulin interaction seems to take place with the core protein of the proteoglycan. In addition, we report that type XII-type I collagen interactions are not necessarily mediated by decorin as previously suggested

    Expression of type XIV collagen during the differentiation of fetal bovine skin: immunolabeling with monoclonal antibody is prominent in morphogenetic areas.

    Get PDF
    International audienceType XIV collagen belongs to the subclass of fibril-associated collagens with interrupted triple helices, which are composed of alternative triple helical and non-collagenous domains. Structural data show that these molecules interact with collagen fibrils and suggest that they might interact with cells. We have investigated the expression of type XIV collagen in bovine skin during development. Fetuses from 9 to 37 weeks were examined. Anti-type XIV collagen monoclonal antibody was produced, characterized, and used for immunofluorescence detection of the molecule. The localization of immunolabeling was analyzed by comparison with light and electron microscopic observations. In 9-week-old fetus, no type XIV collagen was found in the skin. From 19 weeks to birth, extensive immunofluorescence was observed on bundles of collagen fibrils in deep dermis. As shown by electron microscopy, this area exhibited bundles of collagen fibrils and cells with an abundant rough endoplasmic reticulum. In the upper dermis, a delicate fibrillar network of type XIV collagen was revealed by immunofluorescence around growing hair follicles at 19 and 24 weeks. Double labeling for type XIV collagen and fibronectin shows a more restricted pattern of expression of type XIV collagen in this area. The electron microscopic examination of skin of fetuses at these stages shows that the whole upper dermis is composed by a loose connective tissue containing scattered small bundles of collagen fibrils. Type XIV collagen was synthesized in the upper dermis between 24 weeks and birth. From this study, it appears that type XIV collagen expression is distinct from that of fibrillar collagens, at least during some developmental events. The prominent localization of type XIV collagen around growing hair follicles suggests a role for this molecule in epithelial-mesenchymal interactions.Type XIV collagen belongs to the subclass of fibril-associated collagens with interrupted triple helices, which are composed of alternative triple helical and non-collagenous domains. Structural data show that these molecules interact with collagen fibrils and suggest that they might interact with cells. We have investigated the expression of type XIV collagen in bovine skin during development. Fetuses from 9 to 37 weeks were examined. Anti-type XIV collagen monoclonal antibody was produced, characterized, and used for immunofluorescence detection of the molecule. The localization of immunolabeling was analyzed by comparison with light and electron microscopic observations. In 9-week-old fetus, no type XIV collagen was found in the skin. From 19 weeks to birth, extensive immunofluorescence was observed on bundles of collagen fibrils in deep dermis. As shown by electron microscopy, this area exhibited bundles of collagen fibrils and cells with an abundant rough endoplasmic reticulum. In the upper dermis, a delicate fibrillar network of type XIV collagen was revealed by immunofluorescence around growing hair follicles at 19 and 24 weeks. Double labeling for type XIV collagen and fibronectin shows a more restricted pattern of expression of type XIV collagen in this area. The electron microscopic examination of skin of fetuses at these stages shows that the whole upper dermis is composed by a loose connective tissue containing scattered small bundles of collagen fibrils. Type XIV collagen was synthesized in the upper dermis between 24 weeks and birth. From this study, it appears that type XIV collagen expression is distinct from that of fibrillar collagens, at least during some developmental events. The prominent localization of type XIV collagen around growing hair follicles suggests a role for this molecule in epithelial-mesenchymal interactions

    Proteoglycan and collagen synthesis are correlated with actin organization in dedifferentiating chondrocytes.

    No full text
    International audienceThe dedifferentiation of chondrocytes in culture is classically associated with a transition from a rounded to a spread morphology. However, the loss of chondroitin sulfate proteoglycan (CSPG) and type II collagen gene expression (markers of the differentiated chondrocyte) does not occur for all polygonal or fibroblast-like cells at the same stage of culture. Furthermore, it has been demonstrated that retinoic acid-dedifferentiated chondrocytes can reexpress type II collagen if treated by the microfilament disruptive drug dihydrocytochalasin B, without a return to the spherical shape. In the present study, we have investigated by fluorescent double-staining whether the synthesis of both CSPG and type II collagen by dedifferentiating chick chondrocytes in low density cultures is dependent on a type of actin organization. We report that the synthesis of CSPG and type II collagen synthesis is coincident with the presence of a faint microfibrillar actin architecture but is absent in chondrocytes showing well defined actin cables. This correlation was observed independently of the shapes exhibited by the cells. Moreover, type I collagen (marker of the dedifferentiated chondrocyte) is synthesized mainly in cells showing large actin cables. This study, performed in the absence of drugs, suggests that actin organization, rather than changes in cell shape, is involved in modulating the chondrogenic phenotype in vitro.The dedifferentiation of chondrocytes in culture is classically associated with a transition from a rounded to a spread morphology. However, the loss of chondroitin sulfate proteoglycan (CSPG) and type II collagen gene expression (markers of the differentiated chondrocyte) does not occur for all polygonal or fibroblast-like cells at the same stage of culture. Furthermore, it has been demonstrated that retinoic acid-dedifferentiated chondrocytes can reexpress type II collagen if treated by the microfilament disruptive drug dihydrocytochalasin B, without a return to the spherical shape. In the present study, we have investigated by fluorescent double-staining whether the synthesis of both CSPG and type II collagen by dedifferentiating chick chondrocytes in low density cultures is dependent on a type of actin organization. We report that the synthesis of CSPG and type II collagen synthesis is coincident with the presence of a faint microfibrillar actin architecture but is absent in chondrocytes showing well defined actin cables. This correlation was observed independently of the shapes exhibited by the cells. Moreover, type I collagen (marker of the dedifferentiated chondrocyte) is synthesized mainly in cells showing large actin cables. This study, performed in the absence of drugs, suggests that actin organization, rather than changes in cell shape, is involved in modulating the chondrogenic phenotype in vitro

    Mechanisms of collagen trimer assembly

    No full text
    International audiencexx

    Common topology within a non-collagenous domain of several different collagen types.

    No full text
    International audienceThe secondary structure of a conserved non-collagenous module in alpha 1(V), alpha 1(XI), alpha 1(IX), alpha 1(XII), alpha 1(XIV) and alpha 1(XVI) collagen chains and in proline- and arginine-rich protein was analyzed using different algorithms. The results predict that a common anti-parallel beta-sheet structure composed of nine consensus beta-strands is present in these non-collagenous modules. A model for the packing of these beta-sheets is proposed which suggests that the predicted beta-sheet structure may be involved in molecular recognition functions.The secondary structure of a conserved non-collagenous module in alpha 1(V), alpha 1(XI), alpha 1(IX), alpha 1(XII), alpha 1(XIV) and alpha 1(XVI) collagen chains and in proline- and arginine-rich protein was analyzed using different algorithms. The results predict that a common anti-parallel beta-sheet structure composed of nine consensus beta-strands is present in these non-collagenous modules. A model for the packing of these beta-sheets is proposed which suggests that the predicted beta-sheet structure may be involved in molecular recognition functions

    Microfibrillar composition of umbilical cord matrix: characterization of fibrillin, collagen VI and intact collagen V.

    No full text
    International audienceUltrastructural studies made on human umbilical cord revealed that the striated collagen fibrils of the Wharton's jelly matrix are mixed with many microfibrillar structures. Microfibrils were found with a tubular cross-section of 10-12 nm diameter and were organized as beaded filaments characteristic of fibrillin-rich microfibrils. Beads had an average diameter of 25 nm and were spaced at about 50-80 nm. This ultrastructural observation was confirmed by indirect immunofluorescent staining of the jelly matrix using monoclonal antibody to fibrillin. Another constituent of the microfibrillar network was present as typical 100-nm periodic filaments of type VI collagen. Indirect immunofluorescent staining using antibodies to collagen VI showed for the first time that this collagen appeared to be distributed largely in the jelly matrix. In addition, other microfibrils with no specific banding pattern were observed. These microfibrils may constitute an organization of type V collagen different from the one which is generally assembled in heterotypic fibrils with collagen I. Among the latter heterotypic fibrils, type V collagen was studied using an anti-peptide antibody to the most N-terminal non-collagenous region of its alpha 2(V) chain. This antibody recognized a filamentous mesh decorating the bundles of collagen fibrils by immunofluorescent staining. This indicates that at least this part of alpha 2(V) chain may be accessible to the antibody at the surface of the fibrils.Ultrastructural studies made on human umbilical cord revealed that the striated collagen fibrils of the Wharton's jelly matrix are mixed with many microfibrillar structures. Microfibrils were found with a tubular cross-section of 10-12 nm diameter and were organized as beaded filaments characteristic of fibrillin-rich microfibrils. Beads had an average diameter of 25 nm and were spaced at about 50-80 nm. This ultrastructural observation was confirmed by indirect immunofluorescent staining of the jelly matrix using monoclonal antibody to fibrillin. Another constituent of the microfibrillar network was present as typical 100-nm periodic filaments of type VI collagen. Indirect immunofluorescent staining using antibodies to collagen VI showed for the first time that this collagen appeared to be distributed largely in the jelly matrix. In addition, other microfibrils with no specific banding pattern were observed. These microfibrils may constitute an organization of type V collagen different from the one which is generally assembled in heterotypic fibrils with collagen I. Among the latter heterotypic fibrils, type V collagen was studied using an anti-peptide antibody to the most N-terminal non-collagenous region of its alpha 2(V) chain. This antibody recognized a filamentous mesh decorating the bundles of collagen fibrils by immunofluorescent staining. This indicates that at least this part of alpha 2(V) chain may be accessible to the antibody at the surface of the fibrils
    corecore