57 research outputs found
Heuristic procedures for reactive project scheduling.
This paper describes new heuristic reactive project scheduling procedures that may be used to repair resource-constrained roject baseline schedules that suer from multiple activity duration disruptions during project execution.The objective is to minimize the deviations between the baseline schedule and the schedule that is actually realized.We discuss computational results obtained with priority-rule based schedule generation schemes, a sampling approach and a weighted-earliness tardiness heuristic on a set of randomly generated project instances.Project scheduling; Scheduling; Reactive scheduling; Research; Uncertainty; Stability;
Proactive resource allocation heuristics for robust project scheduling.
The well-known deterministic resource-constrained project scheduling problem (RCPSP) involves the determination of apredictive schedule (baseline schedule or pre-schedule)of the project activities that satisfies the finish-start precedence relations and the renewable resource constraints under the objective of minimizing the project duration. This pre-schedule serves as a baseline for the execution of the project. During execution, however, the project can be subject to several types of disruptions that may disturb the baseline schedule. Management must then rely on a reactive scheduling procedure for revising or reoptimizing the pre-schedule. The objective of our research is to develop procedures for allocating resources to the activities of a given baseline schedule in order to maximize its stability in the presence of activity duration variability. We propose three integer programming based heuristics and one constructive procedure for resource allocation. We derive lower bounds for schedule stability and report on computational results obtained on a set of benchmark problems.Research; Resource allocation; Project scheduling; Heuristics; Scheduling;
When It\u27s Springtime In Virginia
https://digitalcommons.library.umaine.edu/mmb-vp/2495/thumbnail.jp
Heuristic procedures for generating stable project baseline schedules
Solution robust project scheduling is a growing research field aiming at constructing proactive schedules to cope with multiple disruptions during project execution. When stochastic activity durations are considered, including time buffers between activities is a proven method to improve the stability of a baseline schedule. This paper introduces multiple algorithms to include time buffers in a given schedule while a predefined project due date remains respected. Multiple efficient heuristic and meta-heuristic procedures are proposed to allocate buffers throughout the schedule. An extensive simulation-based analysis of the performance of all algorithms is given. The impact of the activity duration variance structure on the performance is discussed in detail.status: publishe
Proactive resource allocation heuristics for robust project scheduling
The well-known deterministic resource-constrained project scheduling problem (RCPSP) involves the determination of apredictive schedule (baseline schedule or pre-schedule)of the project activities that satisfies the finish-start precedence relations and the renewable resource constraints under the objective of minimizing the project duration. This pre-schedule serves as a baseline for the execution of the project. During execution, however, the project can be subject to several types of disruptions that may disturb the baseline schedule. Management must then rely on a reactive scheduling procedure for revising or reoptimizing the pre-schedule. The objective of our research is to develop procedures for allocating resources to the activities of a given baseline schedule in order to maximize its stability in the presence of activity duration variability. We propose three integer programming based heuristics and one constructive procedure for resource allocation. We derive lower bounds for schedule stability and report on computational results obtained on a set of benchmark problems.status: publishe
- ā¦