12 research outputs found

    Report of the JARE-54 and BELARE 2012-2013 joint expedition to collect meteorites on the Nansen Ice Field, Antarctica

    Get PDF
    第54次日本南極地域観測隊員4名とベルギー南極観測隊員6 名の合計10名から構成される隕石探査隊は,2012年12月から2013年2月まで,セール・ロンダーネ山地南部に広がるナンセン氷原(南緯72°30′-73°,東経23°-25°,標高約2900-3000m)において隕石探査を実施した.ナンセン氷原には2012年12月26日から2013年2月2日まで39日間滞在した.今回の探査域は第29次日本南極地域観測隊以降探査が行われていない.探査の結果,採集した隕石の総数は424個,合計重量は約70kgであった.隕石発見地点は携帯GPSに記録されたので,探査域における隕石の分布が明確になった.これは隕石集積機構解明のための基礎データだけでなく,今後の探査計画に活用できる.本稿は主に日本隊による準備期間を含む実施報告書である.This paper reports on a joint expedition (JARE-54 and BELARE 2012-2013) that conducted a search for meteorites on the Nansen Ice Field, Antarctica, in an area south of the Sor Rondane Mountains (72°30′-73°S, 23°-25°E; elevation 2900-3000 m). The expedition took place over a period of 39 days during the austral summer, between 26 December 2012 and 2 February 2013. The team consisted of ten members: three researchers and one field assistant from the 54th Japanese Antarctic Research Expedition (JARE-54), and five researchers and one field assistant from the Belgian Antarctic Expedition (BELARE) 2012-2013. Previously, this area had only been searched by JARE-29. The team collected 424 meteorites, which had a total weight of about 70 kg. The search tracks of the ten members of the expedition were recorded using hand-held GPS units, and this allowed the distribution of meteorites within the searched area to be mapped. The resultant data will be useful for planning future expeditions and can be used to clarify the meteorite concentration mechanism on the ice field. This paper focuses on the activities of JARE-54 during the joint expedition

    The record of primitive IIE meteorites: Implications for the formation of silicate-bearing iron meteorites

    No full text
    Iron meteorites are Fe-Ni alloys that are thought to represent samples of the cores of differentiated asteroids. A minority of the iron meteorites contain silicate inclusions, the so-called silicate-bearing or non-magmatic iron meteorites. The presence of chemically evolved silicate inclusions in a high-density Fe-Ni metal raises questions about their origin. The IIE group belongs to the non-magmatic iron meteorites and contains primitive as well as evolved silicate inclusions. The object of this thesis is to investigate the formation processes of the silicate-bearing iron meteorites by examination of the primitive IIE irons. The first chapter provides an overview of the state of the art of silicate-bearing iron meteorites and highlights the existing open questions. The second chapter discusses the most important analytical techniques that have been used during this thesis. The third chapter contains all the research conducted on the Mont Dieu meteorite, a new primitive member of the IIE group. This meteorite represents a unique member of the IIE group as it contains chondrules in its silicate inclusions. Together with the Netschaëvo meteorite, they are the only two IIE irons that show such a primitive texture. Based on the mineralogy, the major element composition and the oxygen isotope composition, we conclude that Mont Dieu originated as an H chondrite. The observation of a series of features, including silicate darkening, thick metal veins containing angular clasts, and the need for a heterogeneous heat source, led to an impact-based origin for Mont Dieu. The fourth chapter is dedicated to the investigation of two samples of the primitive Netschaëvo IIE meteorite, that show lithologies that are very different to those described in the literature. The investigated pieces of Netschaëvo can be classified as impact melt rocks (IMR) and we show that the precursor material of these IMR and the primitive clasts both originated from the same parent body. The occurrence of both lithologies in the same meteorite suggests that Netschaëvo itself is a breccia containing metamorphosed and IMR clasts and that the meteorite formed as the result of an impact event. The fifth chapter focuses on the fine-grained matrix material found in the silicate inclusions of Netschaëvo IIE. This study provides insights into core-mantle boundary environments and confirms the impact-origin of Netschaëvo by the presence of minerals and textures pointing to a very rapid cooling. The investigations show that the re-partitioning of phosphorus from the metal into the silicate material during cooling might be a general process during planetary differentiation. In the sixth chapter, the veins present in the silicate inclusions of Mont Dieu are described in detail, and compared to the veining structures found in Techado IIE silicate. The characteristics of the processes causing the formation of these veins are discussed. The seventh chapter summarizes the conclusions of this thesis. The detailed petrographic and geochemical examinations conducted on the investigated samples show that collisions played a major role in the formation of the IIE iron meteorites. The work performed in the framework of this thesis provides a significant contribution towards a more complete and in-depth understanding of the formation mechanisms of silicate-bearing iron meteorites.Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe

    Immiscible silicate liquids and phosphoran olivine in Netschaëvo IIE silicate: Analogue for planetesimal core–mantle boundaries

    No full text
    We have investigated a piece of the Netschaëvo IIE iron meteorite containing a silicate inclusion by means of electron microprobe analysis (EMPA) and transmission electron microscopy (TEM). Netschaëvo contains chondrule-bearing clasts and impact melt rock clasts were also recently found. The examined inclusion belongs to the latter and is characterized by a porphyritic texture dominated by clusters of coarse-grained olivine and pyroxene, set in a fine-grained groundmass that consists of new crystals of olivine and a hyaline matrix. This matrix material has a quasi-basaltic composition in the inner part of the inclusion, whereas the edge of the inclusion has a lower SiO2 concentration and is enriched in MgO, P2O5, CaO, and FeO. Close to the metal host, the inclusion also contains euhedral Mg-chromite crystals and small (<2 μm), Si-rich globules. A TEM foil was cut from this glassy, silico-phosphate material. It shows that the material consists of elongated olivine crystallites containing up to 14 wt% P2O5, amorphous material, and interstitial Cl-apatite crystals. The Si-rich silicate glass globules show a second population of Fe-rich silicate glass droplets, indicating they formed by silicate liquid immiscibility. Together with the presence of phosphoran olivine and quenched Cl-apatite, these textures suggest rapid cooling and quenching as a consequence of an impact event. Moreover, the enrichment of phosphorus in the silicate inclusion close to the metal host (phosphoran olivine and Cl-apatite) indicates that phosphorus re-partitioned from the metal into the silicate phase upon cooling. This probably also took place in pallasite meteorites that contain late-crystallizing phases rich in phosphorus. Accordingly, our findings suggest that oxidation of phosphorus might be a general process in core–mantle environments, bearing on our understanding of planetesimal evolution. Thus, the Netschaëvo sample serves as a natural planetesimal core–mantle boundary experiment and based on our temperature estimates, the following sequence of events takes place: (i) precipitation of olivine (1400–1360 °C), (ii) re-partitioning of phosphorus from the metal into the silicate phase, and (iii) formation of immiscible melts (1230–1115 °C).SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Report of the JARE-54 and BELARE 2012-2013 joint expedition to collect meteorites on the Nansen Ice Field, Antarctica

    No full text
    This paper reports on a joint expedition (JARE-54 and BELARE 2012-2013) that conducted a search for meteorites on the Nansen Ice Field, Antarctica, in an area south of the Sor Rondane Mountains (72°30′-73°S, 23°-25°E; elevation 2900-3000 m). The expedition took place over a period of 39 days during the austral summer, between 26 December 2012 and 2 February 2013. The team consisted of ten members: three researchers and one field assistant from the 54th Japanese Antarctic Research Expedition (JARE-54), and five researchers and one field assistant from the Belgian Antarctic Expedition (BELARE) 2012-2013. Previously, this area had only been searched by JARE-29. The team collected 424 meteorites, which had a total weight of about 70 kg. The search tracks of the ten members of the expedition were recorded using hand-held GPS units, and this allowed the distribution of meteorites within the searched area to be mapped. The resultant data will be useful for planning future expeditions and can be used to clarify the meteorite concentration mechanism on the ice field. This paper focuses on the activities of JARE-54 during the joint expedition
    corecore