40 research outputs found

    How to combat cyanobacterial blooms: strategy toward preventive lake restoration and reactive control measures

    Full text link

    Telomerase Reverse Transcriptase Polymorphism rs2736100: A Balancing Act between Cancer and Non-Cancer Disease, a Meta-Analysis

    Get PDF
    The enzyme telomerase reverse transcriptase (TERT) is essential for telomere maintenance. In replicating cells, maintenance of telomere length is important for the preservation of vital genetic information and prevention of genomic instability. A common genetic variant in TERT, rs2736100 C/A, is associated with both telomere length and multiple diseases. Carriage of the C allele is associated with longer telomere length, while carriage of the A allele is associated with shorter telomere length. Furthermore, some diseases have a positive association with the C and some with the A allele. In this study, meta-analyses were performed for two groups of diseases, cancerous diseases, e.g., lung cancer and non-cancerous diseases, e.g., pulmonary fibrosis, using data from genome-wide association studies and case-control studies. In the meta-analysis it was found that cancer positively associated with the C allele (pooled OR 1.16 [95% CI 1.09-1.23]) and non-cancerous diseases negatively associated with the C allele (pooled OR 0.81 [95% CI 0.65-0.99]). This observation illustrates that the ambiguous role of telomere maintenance in disease hinges, at least in part, on a single locus in telomerase genes. The dual role of this single nucleotide polymorphism also emphasizes that therapeutic agents aimed at influencing telomere maintenance should be used with caution

    DTI-based assessment of ischemia-reperfusion in mouse skeletal muscle

    No full text
    Diffusion tensor imaging (DTI) is frequently applied to characterize the microscopic geometrical properties of tissue. To establish whether and how diffusion MRI responds to transient ischemia of skeletal muscle, we studied the effects of ischemia and reperfusion using DTI and T2-weighted MRI before and during ischemia and up to 24 hr after reperfusion. Ischemia was induced by 50 min of hindlimb occlusion with or without dorsal flexor stimulation. During ischemia the apparent diffusion coefficient (ADC) tended to decrease (up to 15%), whereas the fractional anisotropy (FA) and T2 showed a varied response depending on the protocol and muscle type. During reperfusion the ADC and T2 initially increased and subsequently renormalized for the occlusion protocol. For the occlusion plus stimulation (OS) protocol, the FA was decreased by 13% and the ADC and T2 were increased by 20% and 57%, respectively, after 24 hr in the stimulated muscle complex. In the latter tissue the three DTI eigenvalues gradually increased upon reperfusion. The smallest eigenvalue (lambda3) showed the largest relative increase. Changes in DTI indices in the reperfusion phases followed a similar time course as the changes in T2. The changes in MR indices after 24 hr correlated with the tissue damage quantified with histology. The highest correlation was observed for lambda3 (R2 = 0.81). This study shows that DTI can be used to assess ischemia-induced damage to skeletal muscl

    Telomerase Reverse Transcriptase Polymorphism rs2736100: A Balancing Act between Cancer and Non-Cancer Disease, a Meta-Analysis

    No full text
    The enzyme telomerase reverse transcriptase (TERT) is essential for telomere maintenance. In replicating cells, maintenance of telomere length is important for the preservation of vital genetic information and prevention of genomic instability. A common genetic variant in TERT, rs2736100 C/A, is associated with both telomere length and multiple diseases. Carriage of the C allele is associated with longer telomere length, while carriage of the A allele is associated with shorter telomere length. Furthermore, some diseases have a positive association with the C and some with the A allele. In this study, meta-analyses were performed for two groups of diseases, cancerous diseases, e.g., lung cancer and non-cancerous diseases, e.g., pulmonary fibrosis, using data from genome-wide association studies and case-control studies. In the meta-analysis it was found that cancer positively associated with the C allele (pooled OR 1.16 [95% CI 1.09–1.23]) and non-cancerous diseases negatively associated with the C allele (pooled OR 0.81 [95% CI 0.65–0.99]). This observation illustrates that the ambiguous role of telomere maintenance in disease hinges, at least in part, on a single locus in telomerase genes. The dual role of this single nucleotide polymorphism also emphasizes that therapeutic agents aimed at influencing telomere maintenance should be used with caution

    Telomere length in interstitial lung diseases

    No full text
    Background: Interstitial lung disease (ILD) is a heterogeneous group of rare diseases that primarily affect the pulmonary interstitium. Studies have implicated a role for telomere length (TL) maintenance in ILD, particularly in idiopathic interstitial pneumonia (IIP). Here, we measure TL in a wide spectrum of sporadic and familial cohorts of ILD and compare TL between patient cohorts and control subjects. Methods: A multiplex quantitative polymerase chain reaction method was used to measure TL in 173 healthy subjects and 359 patients with various ILDs, including familial interstitial pneumonia (FIP). The FIP cohort was divided into patients carrying TERT mutations, patients carrying SFTPA2 or SFTPC mutations, and patients without a proven mutation (FIP-no mutation). Results: TL in all cases of ILD was significantly shorter compared with those of control subjects ( P range: .038 to <.0001). Furthermore, TL in patients with idiopathic pulmonary fibrosis (IPF) was significantly shorter than in patients with other IIPs ( P = .002) and in patients with sarcoidosis ( P < .0001). Within the FIP cohort, patients in the FIP-telomerase reverse transcriptase (TERT) group had the shortest telomeres ( P < .0001), and those in the FIP-no mutation group had TL comparable to that of patients with IPF ( P = .049). Remarkably, TL of patients with FIP-surfactant protein (SFTP) was significantly longer than in patients with IPF, but similar to that observed in patients with other sporadic IIPs. Conclusions: The results show telomere shortening across all ILD diagnoses. The difference in TL between the FIP-TERT and FIP-SFTP groups indicates the distinction between acquired and innate telomere shortening. Short TL in the IPF and FIP-no mutation groups is indicative of an innate telomere-biology defect, while a stress-induced, acquired telomere shortening might be the underlying process for the other ILD diagnoses

    Contractile and morphological properties of hamster retractor muscle following 16 h of cold preservation

    No full text
    Introduction: Cold hypoxia is a common factor in cold tissue preservation and mammalian hibernation. The purpose of this study was to determine the effects of cold preservation on the function of the retractor (RET) muscle of the hamster in the non-hibernating state and compare these with previously published data (van der Heijden et al., 2000) [52] on the rat cutaneus trunci (CT) muscle. Materials and methods: After cold storage (16 h at 4 degrees C). muscles were stimulated electrically to measure maximum tetanus tension (P(0)) and histologically analyzed. The protective effects of addition of the antioxidants trolox and deferiprone and the calcium release inhibitor BDM to the storage fluid were determined. Results: After storage, the twitch threshold current was increased (from 60 to 500 mu A) and P(0) was decreased to 27% of control. RET morphology remained unaffected. RET muscle function was protected by trolox and deferiprone (P(0), resp., 43% and 59% of control). Addition of BDM had no effect on the RET. Conclusions: The observed effects of cold preservation and of trolox and deferiprone on the RET were comparable to those on CT muscle function, as reported in a previously published study (van der Heijden et al., 2000) [52]. Both hamster RET and rat CT muscles show considerable functional damage due to actions of reactive oxygen species. In contrast to the CT, in the RET cold preservation-induced functional injury could not be prevented by BDM and was not accompanied by morphological damage such as necrosis and edema. This suggests that the RET myocytes possess a specific adaptation to withstand the Ca(2+) overload induced by cold ischemia. (C) 2009 Elsevier Inc. All rights reserved

    Cell Type-Specific Quantification of Telomere Length and DNA Double-strand Breaks in Individual Lung Cells by Fluorescence In Situ Hybridization and Fluorescent Immunohistochemistry

    No full text
    Telomeres are small repetitive DNA sequences at the ends of chromosomes which act as a buffer in age-dependent DNA shortening. Insufficient telomere repeats will be recognized as double-strand breaks. Presently, it is becoming more evident that telomere attrition, whether or not caused by mutations in telomere maintenance genes, plays an important role in many inflammatory and age-associated diseases. In this report, a method to (semi)quantitatively assess telomere length and DNA double-strand breaks in formalin-fixed paraffin-embedded (FFPE) tissue is described. Therefore, a novel combination of quantitative fluorescence in situ hybridization, tissue elution, and immunofluorescence staining techniques was developed. Caveolin-1 (type 1 pneumocytes), pro-surfactant protein C (type 2 pneumocytes), club cell-10 (club cells), and alpha smooth muscle actin (smooth muscle cells) markers were used to identify cell types. To visualize all the different probes, restaining the tissue by heat-mediated slide elution is essential. Fluorescent signals of telomeres and DNA double-strand breaks were quantified using the Telometer plugin of ImageJ. As example, we analyzed lung tissue from a familial pulmonary fibrosis patient with a mutation in the telomere-associated gene poly(A)-specific ribonuclease ( PARN). The protocol displays a novel opportunity to directly quantitatively link DNA double-strand breaks to telomere length in specific FFPE cells

    Extensive pulmonary sarcoid reaction in a patient with BMPR-2 associated idiopathic pulmonary arterial hypertension

    No full text
    Pulmonary arterial hypertension is a progressive life-threatening disease characterized by vascular remodeling. There is evidence that varied immune mechanism play an important role in progression of pulmonary hypertension. We describe a case of a 35-year-old woman with idiopathic pulmonary arterial hypertension (IPAH) and a novel BMPR2 mutation, who underwent a successful lung transplantation. Extensive granulomatous inflammation was seen in the resected lungs. The granulomatous inflammation found in the histology supports a sarcoid-like reaction due to pulmonary hypertension in the context of the BMPR2 mutation
    corecore