43 research outputs found

    Towards the Correctness of Software Behavior in UML: A Model Checking Approach Based on Slicing

    Get PDF
    Embedded systems are systems which have ongoing interactions with their environments, accepting requests and producing responses. Such systems are increasingly used in applications where failure is unacceptable: traffic control systems, avionics, automobiles, etc. Correct and highly dependable construction of such systems is particularly important and challenging. A very promising and increasingly attractive method for achieving this goal is using the approach of formal verification. A formal verification method consists of three major components: a model for describing the behavior of the system, a specification language to embody correctness requirements, and an analysis method to verify the behavior against the correctness requirements. This Ph.D. addresses the correctness of the behavioral design of embedded systems, using model checking as the verification technology. More precisely, we present an UML-based verification method that checks whether the conditions on the evolution of the embedded system are met by the model. Unfortunately, model checking is limited to medium size systems because of its high space requirements. To overcome this problem, this Ph.D. suggests the integration of the slicing (reduction) technique

    Investigating the role of filamin C in Belgian patients with frontotemporal dementia linked to GRN deficiency in FTLD-TDP brains

    Get PDF
    TAR DNA-binding protein 43 (TDP-43) inclusions are pathological hallmarks of patients with frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Loss of TDP-43 in zebrafish engenders a severe muscle and vascular phenotype with a concomitant elevation of filamin C (FLNC) levels, an observation confirmed in the frontal cortex of FTLD-TDP patients. Here, we aimed to further assess the contribution of FLNC to frontotemporal dementia (FTD) etiology. We conducted a mutational screening of FLNC in a cohort of 529 unrelated Belgian FTD and FTD-ALS patients, and a control cohort of 920 unrelated and age-matched individuals. Additionally we performed an in-depth characterization of FLNC expression levels in FTD patients and a murine FTD model. In total 68 missense variants were identified of which 19 (MAF C) loss-of-function mutation. Increased FLNC levels were, to a lesser extent, also identified in a FLNC p.V831I variant carrier and in FTD patients with the p.R159H mutation in valosin-containing protein (VCP). The GRN-associated increase of FLNC was confirmed in the frontal cortex of aged Grn knockout mice starting at 16-18 months of age. Combined quantitative proteomic and bioinformatic analyses of the frontal cortex of FTD patients possessing elevated FLNC levels, identified multiple altered protein factors involved in accelerated aging, neurodegeneration and synaptogenesis. Our findings further support the involvement of aberrant FLNC expression levels in FTD pathogenesis. Identification of increased FLNC levels in aged Grn mice and impaired pathways related to aging and neurodegeneration, implies a potential role for FLNC in mediating or accelerating the aging process

    Rare mutations in SQSTM1 modify susceptibility to frontotemporal lobar degeneration

    Get PDF
    Mutations in the gene coding for Sequestosome 1 (SQSTM1) have been genetically associated with amyotrophic lateral sclerosis (ALS) and Paget disease of bone. In the present study, we analyzed the SQSTM1 coding sequence for mutations in an extended cohort of 1,808 patients with frontotemporal lobar degeneration (FTLD), ascertained within the European Early-Onset Dementia consortium. As control dataset, we sequenced 1,625 European control individuals and analyzed whole-exome sequence data of 2,274 German individuals (total n = 3,899). Association of rare SQSTM1 mutations was calculated in a meta-analysis of 4,332 FTLD and 10,240 control alleles. We identified 25 coding variants in FTLD patients of which 10 have not been described. Fifteen mutations were absent in the control individuals (carrier frequency < 0.00026) whilst the others were rare in both patients and control individuals. When pooling all variants with a minor allele frequency < 0.01, an overall frequency of 3.2 % was calculated in patients. Rare variant association analysis between patients and controls showed no difference over the whole protein, but suggested that rare mutations clustering in the UBA domain of SQSTM1 may influence disease susceptibility by doubling the risk for FTLD (RR = 2.18 [95 % CI 1.24-3.85]; corrected p value = 0.042). Detailed histopathology demonstrated that mutations in SQSTM1 associate with widespread neuronal and glial phospho-TDP-43 pathology. With this study, we provide further evidence for a putative role of rare mutations in SQSTM1 in the genetic etiology of FTLD and showed that, comparable to other FTLD/ALS genes, SQSTM1 mutations are associated with TDP-43 pathology

    Loss of DPP6 in neurodegenerative dementia : a genetic player in the dysfunction of neuronal excitability

    Get PDF
    Emerging evidence suggested a converging mechanism in neurodegenerative brain diseases (NBD) involving early neuronal network dysfunctions and alterations in the homeostasis of neuronal firing as culprits of neurodegeneration. In this study, we used paired-end short-read and direct long-read whole genome sequencing to investigate an unresolved autosomal dominant dementia family significantly linked to 7q36. We identified and validated a chromosomal inversion of ca. 4Mb, segregating on the disease haplotype and disrupting the coding sequence of dipeptidyl-peptidase 6 gene (DPP6). DPP6 resequencing identified significantly more rare variants-nonsense, frame-shift, and missense-in early-onset Alzheimer's disease (EOAD, p value = 0.03, OR = 2.21 95% CI 1.05-4.82) and frontotemporal dementia (FTD, p = 0.006, OR = 2.59, 95% CI 1.28-5.49) patient cohorts. DPP6 is a type II transmembrane protein with a highly structured extracellular domain and is mainly expressed in brain, where it binds to the potassium channel K(v)4.2 enhancing its expression, regulating its gating properties and controlling the dendritic excitability of hippocampal neurons. Using in vitro modeling, we showed that the missense variants found in patients destabilize DPP6 and reduce its membrane expression (p < 0.001 and p < 0.0001) leading to a loss of protein. Reduced DPP6 and/or K(v)4.2 expression was also detected in brain tissue of missense variant carriers. Loss of DPP6 is known to cause neuronal hyperexcitability and behavioral alterations in Dpp6-KO mice. Taken together, the results of our genomic, genetic, expression and modeling analyses, provided direct evidence supporting the involvement of DPP6 loss in dementia. We propose that loss of function variants have a higher penetrance and disease impact, whereas the missense variants have a variable risk contribution to disease that can vary from high to low penetrance. Our findings of DPP6, as novel gene in dementia, strengthen the involvement of neuronal hyperexcitability and alteration in the homeostasis of neuronal firing as a disease mechanism to further investigate

    Frontotemporal dementia and its subtypes: a genome-wide association study

    Get PDF
    SummaryBackground Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes—MAPT, GRN, and C9orf72—have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder. Methods We did a two-stage genome-wide association study on clinical FTD, analysing samples from 3526 patients with {FTD} and 9402 healthy controls. To reduce genetic heterogeneity, all participants were of European ancestry. In the discovery phase (samples from 2154 patients with {FTD} and 4308 controls), we did separate association analyses for each {FTD} subtype (behavioural variant FTD, semantic dementia, progressive non-fluent aphasia, and {FTD} overlapping with motor neuron disease FTD-MND), followed by a meta-analysis of the entire dataset. We carried forward replication of the novel suggestive loci in an independent sample series (samples from 1372 patients and 5094 controls) and then did joint phase and brain expression and methylation quantitative trait loci analyses for the associated (p&lt;5 × 10−8) single-nucleotide polymorphisms. Findings We identified novel associations exceeding the genome-wide significance threshold (p&lt;5 × 10−8). Combined (joint) analyses of discovery and replication phases showed genome-wide significant association at 6p21.3, \{HLA\} locus (immune system), for rs9268877 (p=1·05 × 10−8; odds ratio=1·204 95% \{CI\} 1·11–1·30), rs9268856 (p=5·51 × 10−9; 0·809 0·76–0·86) and rs1980493 (p value=1·57 × 10−8, 0·775 0·69–0·86) in the entire cohort. We also identified a potential novel locus at 11q14, encompassing RAB38/CTSC (the transcripts of which are related to lysosomal biology), for the behavioural \{FTD\} subtype for which joint analyses showed suggestive association for rs302668 (p=2·44 × 10−7; 0·814 0·71–0·92). Analysis of expression and methylation quantitative trait loci data suggested that these loci might affect expression and methylation in cis. Interpretation Our findings suggest that immune system processes (link to 6p21.3) and possibly lysosomal and autophagy pathways (link to 11q14) are potentially involved in FTD. Our findings need to be replicated to better define the association of the newly identified loci with disease and to shed light on the pathomechanisms contributing to FTD. Funding The National Institute of Neurological Disorders and Stroke and National Institute on Aging, the Wellcome/MRC Centre on Parkinson's disease, Alzheimer's Research UK, and Texas Tech University Health Sciences Center
    corecore