803 research outputs found

    HI and Hot Gas in the Outskirts of the M81 Group

    Full text link
    Results are presented from a wide area, high resolution HI synthesis survey of the outer regions of the nearby M81 group, where internal (galactic) and external (group-related) evolution processes can be studied simultaneously in great detail. The survey encompasses the star forming dwarf galaxies M81dwA, UGC4483, and HoII, where evidence of ram pressure stripping was recently discovered. The data do not reveal any intergalactic HI, but the outer parts of HoII are reminiscent of tidal tails. We argue however that those structures are equally consistent with the latest ram pressure models including cooling. The case for a hot intergalactic medium in this poor, spiral-only group is thus still open. The survey also puts tight constraints on possible counterparts to the local high velocity cloud population in an external group, reaching a 3 sigma column density of 10^19 atom/cm^2 and a 6 sigma limiting mass of 1.5x10^5 M_sun.Comment: 6 pages, 3 figures, to be published in "Recycling Intergalactic and Interstellar Matter," eds. P.-A. Duc, J. Braine, & E. Brinks (ASP: San Francisco

    An Interacting Galaxy System Along a Filament in a Void

    Full text link
    Cosmological voids provide a unique environment for the study of galaxy formation and evolution. The galaxy population in their interior have significantly different properties than average field galaxies. As part of our Void Galaxy Survey (VGS), we have found a system of three interacting galaxies (VGS_31) inside a large void. VGS_31 is a small elongated group whose members are embedded in a common HI envelope. The HI picture suggests a filamentary structure with accretion of intergalactic cold gas from the filament onto the galaxies. We present deep optical and narrow band H_alpha data, optical spectroscopy, near-UV and far-UV GALEX and CO(1-0) data. We find that one of the galaxies, a Markarian object, has a ring-like structure and a tail evident both in optical and HI. While all three galaxies form stars in their central parts, the tail and the ring of the Markarian object are devoid of star formation. We discuss these findings in terms of a gravitational interaction and ongoing growth of galaxies out of a filament. VGS_31 is one of the first observed examples of a filamentary structure in a void. It is an important prototype for understanding the formation of substructure in a void. This system also shows that the galaxy evolution in voids can be as dynamic as in high density environments.Comment: 17 pages, 8 figures, accepted for publication in A

    Discovery of a Small Central Disk of CO and HI in the Merger Remnant NGC 34

    Get PDF
    We present CO(1-0) and HI(21-cm) observations of the central region of the wet merger remnant NGC 34. The Combined Array for Research in Millimeter-wave Astronomy (CARMA) observations detect a regularly rotating disk in CO with a diameter of 2.1 kpc and a total molecular hydrogen mass of (2.1±0.2)×109 M⊙2.1 \pm 0.2) \times10^9~M_\odot. The rotation curve of this gas disk rises steeply, reaching maximum velocities at 1" (410 pc) from the center. Interestingly, HI observations done with the Karl G. Jansky Very Large Array show that the absorption against the central continuum has the exact same velocity range as the CO in emission. This strongly suggests that the absorbing HI also lies within 1" from the center, is mixed in and corotates with the molecular gas. A comparison of HI absorption profiles taken at different resolutions (5"-45") shows that the spectra at lower resolutions are less deep at the systemic velocity. This provides evidence for HI emission in the larger beams, covering the region from 1 kpc to 9 kpc from the center. The central rapidly rotating disk was likely formed either during the merger or from fall-back material. Lastly, the radio continuum flux of the central source at mm wavelengths (5.4±1.85.4\pm1.8 mJy) is significantly higher than expected from an extrapolation of the synchrotron spectrum, indicating the contribution of thermal free-free emission from the central starburst.Comment: Accepted for publication in A

    KK246, a dwarf galaxy with extended H I disk in the Local Void

    Full text link
    We have found that KK 246, the only confirmed galaxy located within the nearby Tully Void, is a dwarf galaxy with an extremely extended H I disk and signs of an H I cloud with anomalous velocity. It also exhibits clear misalignment between the kinematical major and minor axes, indicative of an oval distortion, and a general misalignment between the H I and optical major axes. We measure a H I mass of 1.05 +- 0.08 x 10^8 M_sun, and a H I extent 5 times that of the stellar disk, one of the most extended H I disks known. We estimate a dynamical mass of 4.1 x 10^9 M_sun, making this also one of the darkest galaxies known, with a mass-to-light ratio of 89. The relative isolation and extreme underdense environment make this an interesting case for examining the role of gas accretion in galaxy evolution.Comment: 15 pages, 8 figures, 2 tables, accepted for publication in A

    An HI survey of the Bootes Void. II. The Analysis

    Get PDF
    We discuss the results of a VLA HI survey of the Bootes void and compare the distribution and HI properties of the void galaxies to those of galaxies found in a survey of regions of mean cosmic density. The Bootes survey covers 1100 Mpc3^{3}, or ∼\sim 1\% of the volume of the void and consists of 24 cubes of typically 2 Mpc * 2 Mpc * 1280 km/s, centered on optically known galaxies. Sixteen targets were detected in HI; 18 previously uncataloged objects were discovered directly in HI. The control sample consists of 12 cubes centered on IRAS selected galaxies with FIR luminosities similar to those of the Bootes targets and located in regions of 1 to 2 times the cosmic mean density. In addition to the 12 targets 29 companions were detected in HI. We find that the number of galaxies within 1 Mpc of the targets is the same to within a factor of two for void and control samples, and thus that the small scale clustering of galaxies is the same in regions that differ by a factor of ∼\sim 6 in density on larger scales. A dynamical analysis of the galaxies in the void suggests that on scales of a few Mpc the galaxies are gravitationally bound, forming interacting galaxy pairs, loose pairs and loose groups. One group is compact enough to qualify as a Hickson compact group. The galaxies found in the void are mostly late-type, gas rich systems. A careful scrutiny of their HI and optical properties shows them to be very similar to field galaxies of the same morphological type. This, combined with our finding that the small scale clustering of the galaxies in the void is the same as in the field, suggests that it is the near environment that mostly affects the evolution of galaxies.Comment: Latex file of abstract. The postscript version of the complete paper (0.2 Mb in gzipped format) including all the figures can be retrieved from http://www.astro.rug.nl:80/~secr/ To appear in the February 1996 issue of the Astronomical Journa
    • …
    corecore