190 research outputs found
Early plaque formation on fibre-reinforced composites in vivo.
AbstractIn the present
study, two different fibre-reinforced composites (FRCs) (glass and
polyethylene FRC), dental ceramic and restorative composite were
compared with respect to early plaque formation in vivo. Disc-shaped
specimens were randomly distributed among the upper first and second
molars of 14 healthy adult volunteers. Plaque samples were collected 24 h
after the attachment of the specimens. Mutans streptococci (MS),
non-mutans streptococci and total facultative bacteria were cultured.
The plaque recovered from polyethylene FRC harboured significantly more
MS than the plaque of ceramic, restorative composite and glass FRC. For
the counts of non-mutans streptococci and total facultative bacteria,
polyethylene FRC showed the highest counts, and ceramic showed a trend
towards lower counts. The amount of plaque accumulation showed an
association to the earlier reported surface roughness values of the
studied materials. It was concluded that in the oral environment,
polyethylene FRC promotes plaque accumulation and adhesion of MS more
than glass FRC, restorative composite and dental ceramic. Glass FRC
resembles restorative composite with respect to plaque accumulation and
the adherence of MS.</div
Effect of three surface conditioning methods to improve bond strength of particulate filler resin composites
The use of resin-based composite materials in operative dentistry is increasing, including applications in stress-bearing areas. However, composite restorations, in common with all restorations, suffer from deterioration and degradation in clinical service. Durable repair alternatives by layering a new composite onto such failed composite restorations, will eliminate unnecessary loss of tooth tissue and repeated insults to the pulp. The objective of this study was to evaluate the effect of three surface conditioning methods on the repair bond strength of a particulate filler resin-composite (PFC) to 5 PFC substrates. The specimens were randomly assigned to one of the following surface conditioning methods: (1) Hydrofluoric (HF) acid gel (9.5%) etching, (2) Air-borne particle abrasion (50 mum Al2O3), (3) Silica coating (30 mum SiOx, CoJet(R)-Sand). After each conditioning method, a silane coupling agent was applied. Adhesive resin was then applied in a thin layer and light polymerized. The low-viscosity diacrylate resin composite was bonded to the conditioned substrates in polyethylene molds. All specimens were tested in dry and thermocycled (6.000, 5-55 degreesC, 30 s) conditions. One-way ANOVA showed significant influence of the surface conditioning methods (p <0.001), and the PFC types (p <0.0001) on the shear bond strength values. Significant differences were observed in bond strength values between the acid etched specimens (5.7-14.3 MPa) and those treated with either air-borne particle abrasion (13.0-22.5 MPa) or silica coating (25.5-41.8 MPa) in dry conditions (ANOVA, p <0.001). After thermocycling, the silica coating process resulted in the highest bond values in all material groups (17.2-30.3 MPa). (C) 2005 Springer Science + Business Media, Inc.</p
A new approach to cure and reinforce cold-cured acrylics
Purpose: The low degree of polymerization of cold-cured acrylics has resulted in inferior mechanical properties and fracture vulnerability in orthodontics removable appliances. Methods: In this study, the effect of reinforcement by various concentrations of chopped E-glass fibers (0%, 1%, 2%, 3% and 5% by weight of resin powder) and post-curing microwave irradiation (800 W for 3 min) on the flexural strength of cold-cured acrylics was evaluated at various storage conditions (at room temperature for 1 day and 7 days; at water storage for 7, 14 and 30 days). Results: The data was analyzed by using 1-way and 2-way ANOVA, and a Tukey post hoc test (α = .05). The specimens with chopped E-glass fibers treated with post-curing microwave irradiation significantly increased the flexural strength of cold-cured PMMA. The optimal concentration might be 2% fibers under irradiation. Conclusions: The exhibited reinforcement effect lasted in a consistent trend for 14 days in water storage. A new fiber-acrylic mixing method was also developed. © 2012 The Author(s).published_or_final_versio
The effect of chlorhexidine and dimethyl sulfoxide on long-term sealing ability of two calcium silicate cements in root canal
Objectives. To evaluate the long-term effect of chlorhexidine (CHX) and dimethyl sulfoxide (DMSO) on the sealing ability and biomineralization of two different calcium silicate cements (CSC) in root canal. Methods. Sixty human third molar root canals were obturated with ProRoot MTA or Biodentine. Before obturation the canals were irrigated with saline (control), 2% CHX or 5% DMSO. Microleakage was tested after three days and after six months. After additional six months (12 months after root filling) the roots were cut into 2 mm thick dentine discs. The discs were stored in artificial saliva for one year. The bond strength was measured with the push-out method, and the failure mode was evaluated with a stereomicroscope. The most apical disc of each tooth was used for Vickers hardness test. Results. No significant differences between the groups was found in initial microleakage. The leakage increased significantly during the 6-month storage in all groups except in Biodentine-CHX group and Biodentine-DMSO group. CHX and DMSO irrigation significantly increased the leakage with ProRoot MTA with time, but there was no statistically significant difference compared to the ProRoot MTA-control group at six months' time point. CHX significantly reduced the push-out bond strength of ProRoot MTA. With Biodentine irrigation with CHX or DMSO resulted with significantly higher push-out strength compared to the Biodentine control group. Fracture analysis showed statistically significant difference in the distribution of the fractures between the groups, but neither CHX nor DMSO change the fracture pattern statistically significantly. With Vickers hardness test ProRoot MTA with and without DMSO as the final irrigant showed significantly higher dentin hardness than any Biodentine-group. Significance. Considering that aging increased the leakage in all groups except with Biodentine-DMSO and the differences in the push-out strength and surface microhardness data, it appears that the time-related biomineralizing effect of MTA and Biodentine does not improve sealing to dentin. CHX significantly reduced ProRoot MTA bond strength and increased pure adhesive failures with both cements. (C) 2020 Published by Elsevier Inc. on behalf of The Academy of Dental Materials.Peer reviewe
- …