400 research outputs found

    Wave and Tidal Controls on Embayment Circulation and Headland Bypassing for an Exposed, Macrotidal Site

    Get PDF
    Headland bypassing is the transport of sediment around rocky headlands by wave and tidal action, associated with high-energy conditions and embayment circulation (e.g., mega-rips). Bypassing may be a key component in the sediment budget of many coastal cells, the quantification of which is required to predict the coastal response to extreme events and future coastal change. Waves, currents, and water levels were measured off the headland of a sandy, exposed, and macrotidal beach in 18-m and 26-m depths for 2 months. The observations were used to validate a Delft3D morphodynamic model, which was subsequently run for a wide range of scenarios. Three modes of bypassing were determined: (i) tidally-dominated control during low–moderate wave conditions [flux O (0–102 m3 day−1)]; (ii) combined tidal- and embayment circulation controls during moderate–high waves [O (103 m3 day−1)]; and (iii) multi-embayment circulation control during extreme waves [O (104 m3 day−1)]. A site-specific bypass parameter is introduced, which accurately (R2 = 0.95) matches the modelled bypass rates. A 5-year hindcast predicts bypassing is an order of magnitude less than observed cross-shore fluxes during extreme events, suggesting that bypassing at this site is insignificant at annual timescales. This work serves a starting point to generalise the prediction of headland bypassing

    Regionally-Coherent Embayment Rotation: Behavioural Response to Bi-Directional Waves and Atmospheric Forcing

    Get PDF
    Bi-directional wave climates often drive beach rotation, increasing erosional risk at semi-sheltered locations. Identification of rotation and forcing mechanisms is vital to future coastal defence. In this study, regional investigation of modelled wave data revealed strong bi-directionality between dominant south-westerly and sub-dominant easterly waves for 14 offshore locations along the length of the south coast of England, U.K. South-westerly wave power was well correlated to positive phases of the West Europe Pressure Anomaly (WEPA), whilst easterly wave power was well correlated with negative phases of the North Atlantic Oscillation (NAO). Additionally, decadal records of beach morphological change and associated wave forcing, were investigated for 22 coastal sites across the same region. Significant rotational behaviour was identified at 11 sites, leading to the creation of a rotation index. Beach rotation was attributed to shoreline angle, with the strongest rotation occurring at south-east-facing beaches, with high obliquity to dominant south-westerly waves. The beach rotation index was well correlated with the normalized balance of wave power from opposing south-westerly and easterly directions. Direct correlations between beach rotation and WEPA at two sites showed that future forecasts of atmospheric indices may allow prediction of rotational beach state, at seasonal scales.</jats:p

    Role of waves and tides on depth of closure and potential for headland bypassing

    Get PDF
    No embargo required.© 2018 Depth of closure is a fundamental concept used to define the seaward extent of a morphodynamically active shoreface at a particular temporal scale. The estimation of this limit in relation to the depth in front of the bounding headlands along embayed coastlines allows questioning whether embayments, often deemed closed sediment cells, experience more headland bypassing than expected. Wave-based parameterisations developed for microtidal beaches are most widely used to estimate closure depth; however, a re-evaluation of the concept for shorefaces influenced by geological control (presence of headlands and/or bedrock) and strong tidal currents is appropriate. Here, we use the macrotidal, embayed and high-energy coastline of SW England to identify the ‘active’ nearshore limits with a multi-method approach that includes observations of shoreface morphology and sedimentology, offshore/inshore wave formulations and bed shear stress computations. We identify the basal limit of ‘significant’ (i.e., 0.14 m) morphological change (Depth of Closure; DoC) and a maximum depth of extreme bed activity and sediment transport (Depth of Transport; DoT). Observations of DoC correspond closely to the values predicted by existing formulations based on inshore wave conditions (10–15 m for the study area; relative to mean low water spring water level in this case). The computed DoT, represented by the upper-plane bed transition attained under extreme conditions, exceeds 30 m depth in the study area. The significant implication is that, even though many headlands appear sufficiently prominent to suggest a closed boundary between adjacent embayments, significant wave- and tide-driven sediment transport is likely to occur beyond the headland base during extreme events, especially at low water levels. The maximum depth for significant sediment transport (DoT) was computed across a broad wave-current parameter space, further highlighting that tidal currents can increase this closure depth estimate by ~10 m along macrotidal coastlines, representing a 30% increase compared to tideless settings. This work illustrates the importance of tidal currents in depth of closure calculations and challenges the notion that embayed beaches are generally closed cells, as headland bypassing may be more wide spread than commonly assumed along exposed coastlines globally

    Coastal survey data for Perranporth Beach and Start Bay in southwest England (2006–2021)

    Get PDF
    Records of beach morphologic change and concurrent hydrodynamic forcing are needed to understand how coastlines in different environments change over time. This submission contains data for the period 2006 to 2021, for two contrasting macrotidal environments in southwest England: (i) cross-shore dominated, dissipative, sandy Perranporth Beach, Cornwall; and (ii) longshore-dominated, reflective gravel beaches within Start Bay, Devon. Data comprise monthly to annual beach profile surveys, annual merged topo-bathymetries, in addition to observed and numerically modelled wave and water levels. These data provide a valuable resource for modelling the behaviour of coastal types not covered by other currently available datasets

    Single extreme storm sequence can offset decades of shoreline retreat projected to result from sea-level rise

    Get PDF
    AbstractExtreme storms cause extensive beach-dune erosion and are typically considered to enhance coastal erosion due to sea-level rise. However, extreme storms can also have a positive contribution to the nearshore sediment budget by exchanging sediment between the lower and upper shoreface and/or between adjacent headlands, potentially mitigating some adverse sea-level rise impacts. Here we use three high-resolution morphological datasets of extreme storm-recovery sequences from Australia, the UK and Mexico to quantify the nearshore sediment budget and relate these episodic volume changes to long-term coastal projections. We show that sediment gains over the upper shoreface were large (59–140 m3/m) and sufficient to theoretically offset decades of projected shoreline retreat due to sea-level rise, even for a high-end greenhouse gas emissions scenario (SSP5-8.5). We conclude that increased confidence in shoreline projections relies fundamentally on a robust quantitative understanding of the sediment budget, including any major short-term sediment contribution by extreme storms.</jats:p

    Self-Trapped Excitons in Ionic-Covalent Silver Halide Crystals and Nanostructures: High-Frequency EPR, ESE, ENDOR and ODMR Studies

    Get PDF
    Silver halides have unique features in solid state physics because their properties are considered to be of borderline nature between ionic and covalent bonding. In AgCl, the self-trapped hole (STH) is centered and partly trapped in the cationic sublattice, forming an Ag2+ ion inside of a (AgCl6)4− complex as a result of the Jahn–Teller distortion. The STH in AgCl can capture an electron from the conduction band forming the self-trapped exciton (STE). Recent results of a study of STE by means of high-frequency electron paramagnetic resonance, electron spin echo, electron–nuclear double resonance (ENDOR) and optically detected magnetic resonance (ODMR) are reviewed. The properties of the STE in AgCl crystals, such as exchange coupling, the ordering of the triplet and singlet sublevels, the dynamical properties of the singlet and triplet states, and the hyperfine interaction with the Ag and Cl (Br) nuclei are discussed. Direct information about the spatial distribution of the wave function of STE unpaired electrons was obtained by ENDOR. From a comparison with the results of an ENDOR study of the shallow electron center and STH, it is concluded that the electron is mainly contained in a hydrogen-like 1s orbital with a Bohr radius of 15.1 ± 0.6 Å, but near its center the electron density reflects the charge distribution of the hole. The hole of the STE is virtually identical to an isolated STH center. For AgCl nanocrystals embedded into the KCl crystalline matrix, the anisotropy of the g-factor of STE and STH was found to be substantially reduced compared with that of bulk AgCl crystals, which can be explained by a considerable suppression of the Jahn–Teller effect in nanoparticles. A study of ODMR in AgBr nanocrystals in KBr revealed spatial confinement effects and allowed estimating the nanocrystal size from the shape of the ODMR spectra
    • …
    corecore