158 research outputs found

    Radiative flux measurements in the stratosphere

    Get PDF
    The objective is to determine how the stratospheric tropospheric exchange of water vapor is affected by the interaction of solar (visible) and planetary (infrared) radiation with tropical cumulonimbus anvils. This research involves field measurements from the ER-2 aircraft as well as radiative transfer modelling to determine heating and cooling rates and profiles that directly affect the exchange between the troposphere and the stratosphere

    Radiative Effects of Aerosols

    Get PDF
    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size-resolved aerosol microphysics and chemistry. Both profiles included a pollution haze from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core. The soot core increased the calculated extinction by about 10% in the most polluted drier layer relative to a pure sulfate aerosol but had significantly less effect at higher humidities. A 3 km descent through a boundary layer air mass dominated by pollutant aerosol with relative humidities (RH) 10-77% yielded a close agreement between the measured and calculated aerosol optical depths (550 nm) of 0.160 (+/- 0.07) and 0. 157 (+/- 0.034) respectively. During descent the aerosol mass scattering coefficient per unit sulfate mass varied from about 5 to 16 m(exp 2)/g and primarily dependent upon ambient RH. However, the total scattering coefficient per total fine mass was far less variable at about 4+/- 0.7 m(exp 2)/g. A subsequent descent through a Saharan dust layer located above the pollution aerosol layer revealed that both layers contributed similarly to aerosol optical depth. The scattering per unit mass of the coarse aged dust was estimated at 1.1 +/- 0.2 m(exp 2)/g. The large difference (50%) in measured and calculated optical depth for the dust layer exceeded measurements

    Radiative Effects of Aerosols

    Get PDF
    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size resolved aerosol microphysics and chemistry. Both profiles included pollution haze layer from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core

    A comparative study of infrared radiance measurements by an ER-2 based radiometer and the LANDSAT 5 Thematic Mapper (TM-6)

    Get PDF
    Infrared radiance measurements were acquired from a radiometer on the NASA ER-2 during a coincident LANDSAT 5 overpass on 28 Oct. 1986 as part of the FIRE Cirrus IFO in the vicinity of Lake Michigan. A comparative study is made to infer microphysical properties of the cirrus cloud field. Radiances are derived from the image by convolving the ER-2 radiometer's effective field of view along the flight path. A multistream radiative transfer model is used to account for the differences in spectral bandwidths, 10.40 to 12.50 microns for the LANDSAT band and 9.90 to 10.87 microns for the radiometer

    Ground-based passive remote sensing during FIRE IFO 2

    Get PDF
    During the FIRE Cirrus IFO II, a set of passive radiometers were deployed at the Coffeyville, Kansas, Hub, site B, to compliment the Radiation Measurement System (RAMS) on board the NASA ER-2 and NCAR Sabreliner. The following three instruments were used at the surface: Narrow-field-of View IR Radiometer (NFOV); Total-Direct-Diffuse Radiometer (TDDR); and Near-Infrared Spectroradiometer (NIRS)

    Direct Observations of Excess Solar Absorption by Clouds

    Get PDF
    Aircraft measurements of solar flux in the cloudy tropical atmosphere reveal that solar absorption by clouds is anomalously large when compared to theoretical estimates. The ratio of cloud forcing at an altitude of 20 kilometers to that at the surface is 1.58 rather than 1.0 as predicted by models. These results were derived from a cloud radiation experiment in which identical instrumentation was deployed on coordinated stacked aircraft. These findings indicate a significant difference between measurements and theory and imply that the interaction between clouds and solar radiation is poorly understood

    Remote sensing of Earth's atmosphere and surface using a digital array scanned interferometer: A new type of imaging spectrometer

    Get PDF
    The capabilities of the digital array scanned interferometer (DASI) class of instruments for measuring terrestrial radiation fields over the visible to mid-infrared are evaluated. DASI's are capable of high throughput, sensitivity and spectral resolution and have the potential for field-of-view spatial discrimination (an imaging spectrometer). The simplicity of design and operation of DASI's make them particularly suitable for field and airborne platform based remote sensing. The long term objective is to produce a versatile field instrument which may be applied toward a variety of atmospheric and surface studies. The operation of DASI and its advantages over other spectrometers are discussed

    Cirrus microphysics and radiative transfer: Cloud field study on October 28, 1986

    Get PDF
    The radiative properties of cirrus clouds present one of the unresolved problems in weather and climate research. Uncertainties in ice particle amount and size and, also, the general inability to model the single scattering properties of their usually complex particle shapes, prevent accurate model predictions. For an improved understanding of cirrus radiative effects, field experiments, as those of the Cirrus IFO of FIRE, are necessary. Simultaneous measurements of radiative fluxes and cirrus microphysics at multiple cirrus cloud altitudes allows the pitting of calculated versus measured vertical flux profiles; with the potential to judge current cirrus cloud modeling. Most of the problems in this study are linked to the inhomogeneity of the cloud field. Thus, only studies on more homogeneous cirrus cloud cases promises a possibility to improve current cirrus parameterizations. Still, the current inability to detect small ice particles will remain as a considerable handicap

    Cirrus cloud statistics: Temperatures and optical depths

    Get PDF
    Measurements of the upwelling infrared radiance at 10.5 and 6.5 microns were obtained during the FIRE cirrus Intensive Field Observations using a radiometer with a 15 deg cone nadir field-of-view flown on the NASA Ames ER-2. Data are recorded at a frequency of 1 Hz and the radiometer is continuously calibrated with a liquid nitrogen blackbody source, thereby providing a large number of very accurate radiance values during the course of a several hour flight. For this study, the focus is on the statistical properties of the cirrus deck as deduced from the radiance data. The data acquired on 28 October 1986 is stressed, but some data from the other flights are also shown for comparison purposes

    Optical properties of cirrus derived from airborne measurements during FIRE IFO 2

    Get PDF
    The Radiation Measurement System (RAMS) on board the NASA ER-2 was used to acquire several optical parameters of interest during the FIRE Cirrus IFO 2. In this abstract we present results from the 26 Nov. IFO when the ER-2 flew over the Coffeyville airport hub site. We show retrieved optical thickness and cloud temperature, along with optical thickness obtained from RAMS instruments on the NCAR Sabreliner and at the surface site B. Independent retrieval of optical thickness, from the ER-2 and at the surface, are in agreement during the overpasses. Cirrus optical depths, derived from each platform, ranged between 1 and 2
    • …
    corecore