33 research outputs found

    Intrinsic Epithelial Cells Repair the Kidney after Injury

    Get PDF
    SummaryUnderstanding the mechanisms of nephron repair is critical for the design of new therapeutic approaches to treat kidney disease. The kidney can repair after even a severe insult, but whether adult stem or progenitor cells contribute to epithelial renewal after injury and the cellular origin of regenerating cells remain controversial. Using genetic fate-mapping techniques, we generated transgenic mice in which 94%–95% of tubular epithelial cells, but no interstitial cells, were labeled with either β-galactosidase (lacZ) or red fluorescent protein (RFP). Two days after ischemia-reperfusion injury (IRI), 50.5% of outer medullary epithelial cells coexpress Ki67 and RFP, indicating that differentiated epithelial cells that survived injury undergo proliferative expansion. After repair was complete, 66.9% of epithelial cells had incorporated BrdU, compared to only 3.5% of cells in the uninjured kidney. Despite this extensive cell proliferation, no dilution of either cell-fate marker was observed after repair. These results indicate that regeneration by surviving tubular epithelial cells is the predominant mechanism of repair after ischemic tubular injury in the adult mammalian kidney

    IL-34 mediates acute kidney injury and worsens subsequent chronic kidney disease

    Get PDF
    Macrophages (Mø) are integral in ischemia/reperfusion injury–incited (I/R-incited) acute kidney injury (AKI) that leads to fibrosis and chronic kidney disease (CKD). IL-34 and CSF-1 share a receptor (c-FMS), and both cytokines mediate Mø survival and proliferation but also have distinct features. CSF-1 is central to kidney repair and destruction. We tested the hypothesis that IL-34–dependent, Mø-mediated mechanisms promote persistent ischemia-incited AKI that worsens subsequent CKD. In renal I/R, the time-related magnitude of Mø-mediated AKI and subsequent CKD were markedly reduced in IL-34–deficient mice compared with controls. IL-34, c-FMS, and a second IL-34 receptor, protein-tyrosine phosphatase ζ (PTP-ζ) were upregulated in the kidney after I/R. IL-34 was generated by tubular epithelial cells (TECs) and promoted Mø-mediated TEC destruction during AKI that worsened subsequent CKD via 2 distinct mechanisms: enhanced intrarenal Mø proliferation and elevated BM myeloid cell proliferation, which increases circulating monocytes that are drawn into the kidney by chemokines. CSF-1 expression in TECs did not compensate for IL-34 deficiency. In patients, kidney transplants subject to I/R expressed IL-34, c-FMS, and PTP−ζ in TECs during AKI that increased with advancing injury. Moreover, IL-34 expression increased, along with more enduring ischemia in donor kidneys. In conclusion, IL-34-dependent, Mø-mediated, CSF-1 nonredundant mechanisms promote persistent ischemia-incited AKI that worsens subsequent CKD

    Six2 and Wnt Regulate Self-Renewal and Commitment of Nephron Progenitors through Shared Gene Regulatory Networks

    Get PDF
    A balance between Six2-dependent self-renewal and canonical Wnt signaling-directed commitment regulates mammalian nephrogenesis. Intersectional studies using chromatin immunoprecipitation and transcriptional profiling identified direct target genes shared by each pathway within nephron progenitors. Wnt4 and Fgf8 are essential for progenitor commitment; cis-regulatory modules flanking each gene are co-bound by Six2 and β-catenin, and dependent on conserved Lef/Tcf binding sites for activity. In vitro and in vivo analyses suggest that Six2 and Lef/Tcf factors form a regulatory complex that promotes progenitor maintenance while entry of β-catenin into this complex promotes nephrogenesis. Alternative transcriptional responses associated with Six2 and β-catenin co-binding events occur through non-Lef/Tcf DNA binding mechanisms highlighting the regulatory complexity downstream of Wnt signaling in the developing mammalian kidney

    Human ureteric bud organoids recapitulate branching morphogenesis and differentiate into functional collecting duct cell types

    No full text
    Kidney collecting duct cells with physiologic functions are generated from human pluripotent stem cells. Directed differentiation of human pluripotent stem cells (hPSCs) into functional ureteric and collecting duct (CD) epithelia is essential to kidney regenerative medicine. Here we describe highly efficient, serum-free differentiation of hPSCs into ureteric bud (UB) organoids and functional CD cells. The hPSCs are first induced into pronephric progenitor cells at 90% efficiency and then aggregated into spheres with a molecular signature similar to the nephric duct. In a three-dimensional matrix, the spheres form UB organoids that exhibit branching morphogenesis similar to the fetal UB and correct distal tip localization of RET expression. Organoid-derived cells incorporate into the UB tips of the progenitor niche in chimeric fetal kidney explant culture. At later stages, the UB organoids differentiate into CD organoids, which contain >95% CD cell types as estimated by single-cell RNA sequencing. The CD epithelia demonstrate renal electrophysiologic functions, with ENaC-mediated vectorial sodium transport by principal cells and V-type ATPase proton pump activity by FOXI1-induced intercalated cells

    Enhancer and super-enhancer dynamics in repair after ischemic acute kidney injury

    No full text
    Acute kidney injury is a major health problem amongst hospitalized patients. Here the authors provide a comprehensive characterization of enhancer and super-enhancer elements, and the transcription factor motifs associated with these elements in response to kidney injury in vivo; providing insight into the regulation of kidney repair
    corecore