6,436 research outputs found

    Thermal Renormalons in Scalar Field Theory

    Get PDF
    In the frame of the scalar theory gϕ4g \phi ^{4}, we explore the occurrence of thermal renormalons, i. e. temperature dependent singularities in the Borel plane. The discussion of a particular renormalon type diagram at finite temperature, using Thermofield Dynamics, allows us to establish that these singularities actually get a temperature dependence. This dependence appears in the residues of the poles, remaining their positions unchanged with temperature.Comment: 12 pages, 3 figures, uses feynMF. Minor correction

    Giant magnetoimpedance in Vitrovac amorphous ribbons over [0.3-400 MHz] frequency range

    Full text link
    Giant magneto impedance (GMI) effect for as-cast Vitrovac®^{\textrm{\scriptsize\textregistered}} amorphous ribbons (Vacuumschmelze, Germany) in two configurations (parallel and normal to the ribbon axis) is studied over the frequency range [0.3-400 MHz] and under static magnetic fields -160 Oe <Hdc<< H_{dc} < +160 Oe. A variety of peak features and GMI ratio values, falling within a small field range, are observed and discussed.Comment: Paper submitted to International Conference on Magnetism 2003 (ICM Rome 2003

    Metal-to-glass ratio and the Magneto-Impedance of glass-covered CoFeBSi microwires at high frequencies

    Full text link
    High frequency [1-500 MHz] measurements of the Magneto-Impedance (MI) of glass-covered Co69.4_{69.4}Fe3.7_{3.7}B15.9_{15.9}Si11_{11} microwires are carried out with various metal-to-wire diameter ratios. A twin-peak, anhysteretic behaviour is observed as a function of magnetic field. A maximum in ΔZ/Z\Delta Z/Z appears at different values of the frequency ff, 125, 140 and 85 MHz with the corresponding diameter ratio pp = 0.80, 0.55 and 0.32. We describe the measurement technique and interpret our results with a thermodynamic model that leads to a clearer view of the effects of pp on the maximum value of MI and the anisotropy field.Comment: 5 pages and 6 figure

    Geographic body size variation in ectotherms: effects of seasonality on an anuran from the southern temperate forest

    Get PDF
    Indexación: Web of Science; Scopus.Background: Body size variation has played a central role in biogeographical research, however, most studies have aimed to describe trends rather than search for underlying mechanisms. In order to provide a more comprehensive understanding of the causes of intra-specific body size variation in ectotherms, we evaluated eight hypotheses proposed in the literature to account for geographical body size variation using the Darwin's frog (Rhinoderma darwinii), an anuran species widely distributed in the temperate forests of South America. Each of the evaluated hypotheses predicted a specific relationship between body size and environmental variables. The level of support for each of these hypotheses was assessed using an information-theoretic approach and based on data from 1015 adult frogs obtained from 14 sites across the entire distributional range of the species. Results: There was strong evidence favouring a single model comprising temperature seasonality as the predictor variable. Larger body sizes were found in areas of greater seasonality, giving support to the "starvation resistance" hypothesis. Considering the known role of temperature on ectothermic metabolism, however, we formulated a new, non-exclusive hypothesis, termed "hibernation hypothesis": greater seasonality is expected to drive larger body size, since metabolic rate is reduced further and longer during colder, longer winters, leading to decreased energy depletion during hibernation, improved survival and increased longevity (and hence growth). Supporting this, a higher post-hibernation body condition in animals from areas of greater seasonality was found. Conclusions: Despite largely recognized effects of temperature on metabolic rate in ectotherms, its importance in determining body size in a gradient of seasonality has been largely overlooked so far. Based on our results, we present and discuss an alternative mechanism, the "hibernation hypothesis", underlying geographical body size variation, which can be helpful to improve our understanding of biogeographical patterns in ectotherms.https://frontiersinzoology.biomedcentral.com/articles/10.1186/s12983-015-0132-

    On the coupling of vector fields to the Gauss-Bonnet invariant

    Full text link
    Inflationary models including vector fields have attracted a great deal of attention over the past decade. Such an interest owes to the fact that they might contribute to, or even be fully responsible for, the curvature perturbation imprinted in the CMB. However, the necessary breaking of the vector field's conformal invariance during inflation is not without problems. In recent years it has been realized that a number of instabilities endangering the consistency of the theory arise when the conformal invariance is broken by means of a non-minimal coupling to gravity. In this paper we consider a massive vector field non-minimally coupled to gravity through the Gauss-Bonnet invariant, and investigate whether the vector can obtain a nearly scale-invariant perturbation spectrum while evading the emergence of perturbative instabilities. We find that the strength of the coupling must be extremely small if the vector field is to have a chance to contribute to the total curvature perturbation.Comment: 8 pages, 1 figur

    Massive stealth scalar fields from field redefinition method

    Full text link
    We propose an uni-parametric deformation method of action principles of scalar fields coupled to gravity which generates new models with massive stealth field configurations, i.e. with vanishing energy-momentum tensor. The method applies to a wide class of models and we provide three examples. In particular we observe that in the case of the standard massive scalar action principle, the respective deformed action contains the stealth configurations and it preserves the massive ones of the undeformed model. We also observe that, in this latter example, the effect of the energy-momentum tensor of the massive (non-stealth) field can be amplified or damped by the deformation parameter, alternatively the mass of the stealth field.Comment: 12 page
    • …
    corecore