350 research outputs found

    Impaired awareness of action-outcome contingency and causality during healthy ageing and following ventromedial prefrontal cortex lesions

    Get PDF
    Detecting causal relationships between actions and their outcomes is fundamental to guiding goal-directed behaviour. The ventromedial prefrontal cortex (vmPFC) has been extensively implicated in computing these environmental contingencies, via animal lesion models and human neuroimaging. However, whether the vmPFC is critical for contingency learning, and whether it can occur without subjective awareness of those contingencies, has not been established. To address this, we measured response adaption to contingency and subjective awareness of action-outcome relationships in individuals with vmPFC lesions and healthy elderly subjects. We showed that in both vmPFC damage and ageing, successful behavioural adaptation to variations in action-outcome contingencies was maintained, but subjective awareness of these contingencies was reduced. These results highlight two contexts where performance and awareness have been dissociated, and show that learning response-outcome contingencies to guide behaviour can occur without subjective awareness. Preserved responding in the vmPFC group suggests that this region is not critical for computing action-outcome contingencies to guide behaviour. In contrast, our findings highlight a critical role for the vmPFC in supporting awareness, or metacognitive ability, during learning. We further advance the hypothesis that responding to changing environmental contingencies, whilst simultaneously maintaining conscious awareness of those statistical regularities, is a form of dual-tasking that is impaired in ageing due to reduced prefrontal function.Recruitment and characterisation of individuals with brain lesions was made possible by the Cambridge Cognitive Neuroscience Research Panel at the MRC Cognition and Brain Sciences Unit, Cambridge. We acknowledge the contribution of Dr Sharon Erzinçlioğlu, Prof. Facundo Manes and Dr Tilak Das (consultant radiologist, Addenbroke’s Hospital) for their involvement in co-ordinating the panel, lesion tracing, and referral to the panel. This research was funded by a Wellcome Trust Senior Investigator Award (104631/Z/14/Z) to TWR. Work was completed at the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK, supported by a joint award from the Medical Research Council and Wellcome Trust (G00001354). CO is supported by a National Health and Medical Research Council Neil Hamilton Fairley Fellowship (GNT 1091310). MMV is supported by a Pinsent Darwin Scholarship in Mental Pathology and Angharad Dodds John Bursary in Mental Health and Neuropsychiatry

    Efficiency of DNA mini-barcoding to assess mislabeling in commercial fish products in italy: An overview of the last decade

    Get PDF
    The problem of fish traceability in processed products is still an important issue in food safety. Major attention is nowadays dedicated to consumer health and prevention of possible frauds regulated by national and international laws. For this reason, a technical approach is fun-damental in revealing mislabeling at different levels. In particular, the use of genetic markers has been standardized and DNA barcoding is considered the gold-standard strategy to examine and prevent species substitution. Considering the richness of available DNA databases, it is nowadays possible to rapidly reach a reliable taxonomy at the species level. Among different approaches, an innovative method based on DNA mini barcoding has recently been proposed at an international level. Starting from this evidence, we herein illustrate an investigation dealing with the evolution of this topic in Italy over the last decade. The molecular analysis of 71 commercial fish samples based on mini-COI sequencing with two different primer sets reached an amplification success rate of 87.3 and 97.2%. The investigation revealed four major frauds (5.8%) and four minor ones (5.8%). Results highlighted a decrease in incorrect labeling in Italy from 32% to 11.6% over the last decade, although a recurrent involvement of “endangered” species sensu IUCN was still observed

    Fine-grained semantic categorization across the abstract and concrete domains

    Get PDF
    A consolidated approach to the study of the mental representation of word meanings has consisted in contrasting different domains of knowledge, broadly reflecting the abstract-concrete dichotomy. More fine-grained semantic distinctions have emerged in neuropsychological and cognitive neuroscience work, reflecting semantic category specificity, but almost exclusively within the concrete domain. Theoretical advances, particularly within the area of embodied cognition, have more recently put forward the idea that distributed neural representations tied to the kinds of experience maintained with the concepts' referents might distinguish conceptual meanings with a high degree of specificity, including those within the abstract domain. Here we report the results of two psycholinguistic rating studies incorporating such theoretical advances with two main objectives: first, to provide empirical evidence of fine-grained distinctions within both the abstract and the concrete semantic domains with respect to relevant psycholinguistic dimensions; second, to develop a carefully controlled linguistic stimulus set that may be used for auditory as well as visual neuroimaging studies focusing on the parametrization of the semantic space beyond the abstract-concrete dichotomy. Ninety-six participants rated a set of 210 sentences across pre-selected concrete (mouth, hand, or leg action-related) and abstract (mental state-, emotion-, mathematics-related) categories, with respect either to different semantic domain-related scales (rating study 1), or to concreteness, familiarity, and context availability (rating study 2). Inferential statistics and correspondence analyses highlighted distinguishing semantic and psycholinguistic traits for each of the pre-selected categories, indicating that a simple abstract-concrete dichotomy is not sufficient to account for the entire semantic variability within either domains

    Sentential negation of abstract and concrete conceptual categories: a brain decoding multivariate pattern analysis study

    Get PDF
    We rarely use abstract and concrete concepts in isolation but rather embedded within a linguistic context. To examine the modulatory impact of the linguistic context on conceptual processing, we isolated the case of sentential negation polarity, in which an interaction occurs between the syntactic operator not and conceptual information in the negation's scope. Previous studies suggested that sentential negation of concrete action-related concepts modulates activation in the fronto-parieto-temporal action representation network. In this functional magnetic resonance imaging study, we examined the influence of negation on a wider spectrum of meanings, by factorially manipulating sentence polarity (affirmative, negative) and fine-grained abstract (mental state, emotion, mathematics) and concrete (related to mouth, hand, leg actions) conceptual categories. We adopted a multivariate pattern analysis approach, and tested the accuracy of a machine learning classifier in discriminating brain activation patterns associated to the factorial manipulation. Searchlight analysis was used to localize the discriminating patterns. Overall, the neural processing of affirmative and negative sentences with either an abstract or concrete content could be accurately predicted by means of multivariate classification. We suggest that sentential negation polarity modulates brain activation in distributed representational semantic networks, through the functional mediation of syntactic and cognitive control systems

    Flow cytometric analysis of DNA content in human ovarian cancers.

    Get PDF
    A total of 155 samples from 101 patients with ovarian cancer were investigated using flow cytometry to evaluate the DNA index and the percentage of cells in the various cell cycle phases. Thirty-four samples were DNA diploid tumours, while the other 121 were DNA aneuploid tumours. The DNA index was very stable in different sites and over time in the same patient. Tumour stage and ploidy were significantly associated: stages III and IV tumour stage were more likely to be DNA aneuploid. Patients with residual tumour size at first surgery greater than 2 cm had a significantly larger number of DNA aneuploid than DNA diploid tumours. The DNA index was also related to the degree of differentiation of the tumours. The percentage of cells in the S phase of the cell cycle was significantly higher in DNA aneuploid and in poorly differentiated tumours than DNA diploid and well differentiated tumours. Multivariate analysis using the Cox model showed that the DNA index and the percentage of cells in S phase were not independent prognostic variables in this study. Prospectively collected data should be accumulated before assigning the DNA index an important role as a biological prognostic factor in ovarian cancer

    Effective connectivity gateways to the Theory of Mind network in processing communicative intention

    Get PDF
    An Intention Processing Network (IPN), involving the medial prefrontal cortex, precuneus, bilateral posterior superior temporal sulcus, and temporoparietal junctions, plays a fundamental role in comprehending intentions underlying action goals. In a previous fMRI study, we showed that, depending on the linguistic or extralinguistic (gestural) modality used to convey the intention, the IPN is complemented by activation of additional brain areas, reflecting distinct modality-specific input gateways to the IPN. These areas involve, for the linguistic modality, the left inferior frontal gyrus (LIFG), and for the extralinguistic modality, the right inferior frontal gyrus (RIFG). Here, we tested the modality-specific gateway hypothesis, by using DCM to measure inter-regional functional integration dynamics between the IPN and LIFG/RIFG gateways. We found strong evidence of a well-defined effective connectivity architecture mediating the functional integration between the IPN and the inferior frontal cortices. The connectivity dynamics indicate a modality-specific propagation of stimulus information from LIFG to IPN for the linguistic modality, and from RIFG to IPN for the extralinguistic modality. Thus, we suggest a functional model in which the modality-specific gateways mediate the structural and semantic decoding of the stimuli, and allow for the modality-specific communicative information to be integrated in Theory of Mind inferences elaborated through the IPN

    Decoding the neural representation of fine-grained conceptual categories

    Get PDF
    Neuroscientific research on conceptual knowledge based on the grounded cognition framework has shed light on the organization of concrete concepts into semantic categories that rely on different types of experiential information. Abstract concepts have traditionally been investigated as an undifferentiated whole, and have only recently been addressed in a grounded cognition perspective. The present fMRI study investigated the involvement of brain systems coding for experiential information in the conceptual processing of fine-grained semantic categories along the abstract–concrete continuum. These categories consisted of mental state-, emotion-, mathematics-, mouth action-, hand action-, and leg action-related meanings. Thirty-five sentences for each category were used as stimuli in a 1-back task performed by 36 healthy participants. A univariate analysis failed to reveal category-specific activations. Multivariate pattern analyses, in turn, revealed that fMRI data contained sufficient information to disentangle all six fine-grained semantic categories across participants. However, the category-specific activity patterns showed no overlap with the regions coding for experiential information. These findings demonstrate the possibility of detecting specific patterns of neural representation associated with the processing of fine-grained conceptual categories, crucially including abstract ones, though bearing no anatomical correspondence with regions coding for experiential information as predicted by the grounded cognition hypothesis

    Conservative and disruptive modes of adolescent change in human brain functional connectivity

    Get PDF
    Adolescent changes in human brain function are not entirely understood. Here, we used multiecho functional MRI (fMRI) to measure developmental change in functional connectivity (FC) of resting-state oscillations between pairs of 330 cortical regions and 16 subcortical regions in 298 healthy adolescents scanned 520 times. Participants were aged 14 to 26 y and were scanned on 1 to 3 occasions at least 6 mo apart. We found 2 distinct modes of age-related change in FC: “conservative” and “disruptive.” Conservative development was characteristic of primary cortex, which was strongly connected at 14 y and became even more connected in the period from 14 to 26 y. Disruptive development was characteristic of association cortex and subcortical regions, where connectivity was remodeled: connections that were weak at 14 y became stronger during adolescence, and connections that were strong at 14 y became weaker. These modes of development were quantified using the maturational index (MI), estimated as Spearman’s correlation between edgewise baseline FC (at 14 y, FC14) and adolescent change in FC (ΔFC14−26), at each region. Disruptive systems (with negative MI) were activated by social cognition and autobiographical memory tasks in prior fMRI data and significantly colocated with prior maps of aerobic glycolysis (AG), AG-related gene expression, postnatal cortical surface expansion, and adolescent shrinkage of cortical thickness. The presence of these 2 modes of development was robust to numerous sensitivity analyses. We conclude that human brain organization is disrupted during adolescence by remodeling of FC between association cortical and subcortical areas

    Risk taking for potential losses but not gains increases with time of day

    Get PDF
    Humans exhibit distinct risk preferences when facing choices involving potential gains and losses. These preferences are believed to be subject to neuromodulatory influence, particularly from dopamine and serotonin. As neuromodulators manifest circadian rhythms, this suggests decision making under risk might be affected by time of day. Here, in a large subject sample collected using a smartphone application, we found that risky options with potential losses were increasingly chosen over the course of the day. We observed this result in both a within-subjects design (N = 2599) comparing risky options chosen earlier and later in the day in the same individuals, and in a between-subjects design (N = 26,720) showing our effect generalizes across ages and genders. Using computational modelling, we show this diurnal change in risk preference reflects a decrease in sensitivity to increasing losses, but no change was observed in the relative impacts of gains and losses on choice (i.e., loss aversion). Thus, our findings reveal a striking diurnal modulation in human decision making, a pattern with potential importance for real-life decisions that include voting, medical decisions, and financial investments
    • 

    corecore