39 research outputs found

    Genome-wide associations for birth weight and correlations with adult disease

    Get PDF
    Birth weight (BW) has been shown to be influenced by both fetal and maternal factors and in observational studies is reproducibly associated with future risk of adult metabolic diseases including type 2 diabetes (T2D) and cardiovascular disease1. These life-course associations have often been attributed to the impact of an adverse early life environment. Here, we performed a multi-ancestry genome-wide association study (GWAS) meta-analysis of BW in 153,781 individuals, identifying 60 loci where fetal genotype was associated with BW (P < 5 × 10−8). Overall, approximately 15% of variance in BW was captured by assays of fetal genetic variation. Using genetic association alone, we found strong inverse genetic correlations between BW and systolic blood pressure (Rg = −0.22, P = 5.5 × 10−13), T2D (Rg = −0.27, P = 1.1 × 10−6) and coronary artery disease (Rg = −0.30, P = 6.5 × 10−9). In addition, using large -cohort datasets, we demonstrated that genetic factors were the major contributor to the negative covariance between BW and future cardiometabolic risk. Pathway analyses indicated that the protein products of genes within BW-associated regions were enriched for diverse processes including insulin signalling, glucose homeostasis, glycogen biosynthesis and chromatin remodelling. There was also enrichment of associations with BW in known imprinted regions (P = 1.9 × 10−4). We demonstrate that life-course associations between early growth phenotypes and adult cardiometabolic disease are in part the result of shared genetic effects and identify some of the pathways through which these causal genetic effects are mediated

    Implementation of interval walking training in patients with type 2 diabetes in Denmark: rationale, design, and baseline characteristics

    No full text
    Mathias Ried-Larsen,1&ndash;3 Reimar W Thomsen,2,4 Klara Berencsi,4 Cecilie F Brinkl&oslash;v,1,5 Charlotte Br&oslash;ns,1,5 Laura S Valentiner,1,6 Kristian Karstoft,1,3 Henning Langberg,1,6 Allan A Vaag,1,2,5 Bente K Pedersen,1,3 Jens S Nielsen7 1Department of Infectious Diseases, Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, 2The Danish Diabetes Academy, Odense University Hospital, Odense, 3Department of Infectious Diseases, Centre of Inflammation and Metabolism, Rigshospitalet, University of Copenhagen, Copenhagen, 4Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus Nord, 5Department of Endocrinology (Diabetes and Metabolism), Rigshospitalet, University of Copenhagen, 6CopenRehab, Department of Public Health, Section of Social Medicine, University of Copenhagen, Copenhagen, 7Department of Endocrinology, Odense University Hospital, Odense, Denmark Abstract: Promoting physical activity is a first-line choice of treatment for patients with type 2 diabetes (T2D). However, there is a need for more effective tools and technologies to facilitate structured lifestyle interventions and to ensure a better compliance, sustainability, and health benefits of exercise training in patients with T2D. The InterWalk initiative and its innovative application (app) for smartphones described in this study were developed by the Danish Centre for Strategic Research in T2D aiming at implementing, testing, and validating interval walking in patients with T2D in Denmark. The interval walking training approach consists of repetitive 3-minute cycles of slow and fast walking with simultaneous intensity guiding, based on the exercise capacity of the user. The individual intensity during slow and fast walking is determined by a short initial self-conducted and audio-guided fitness test, which combined with automated audio instructions strives to motivate the individual to adjust the intensity to the predetermined individualized walking intensities. The InterWalk app data are collected prospectively from all users and will be linked to the unique Danish nationwide databases and administrative registries, allowing extensive epidemiological studies of exercise in patients with T2D, such as the level of adherence to InterWalk training and long-term effectiveness surveys of important health outcomes, including cardiovascular morbidity and mortality. Currently, the InterWalk app has been downloaded by &gt;30,000 persons, and the achieved epidemiological data quality is encouraging. Of the 9,466 persons providing personal information, 80% of the men and 62% women were overweight or obese (body mass index &ge;25). The InterWalk project represents a contemporary technology-driven public health approach to monitor real-life exercise adherence and to propagate improved health through exercise intervention in T2D and in the general population. Keywords: exercise, telemedicine, cell phone
    corecore