160 research outputs found

    Deciphering amyloid fibril molecular maturation through FLIM-phasor analysis of thioflavin T

    Get PDF
    The investigation of amyloid fibril formation is paramount for advancing our understanding of neurodegenerative diseases and for exploring potential correlated therapeutic strategies. Moreover, the self-assembling properties of amyloid fibrils show promise for the development of advanced protein-based biomaterials. Among the methods employed to monitor protein aggregation processes, fluorescence has emerged as a powerful tool. Its exceptional sensitivity enables the detection of early-stage aggregation events that are otherwise challenging to observe. This research underscores the pivotal role of fluorescence analysis, particularly in investigating the aggregation processes of hen egg white lysozyme, a model protein extensively studied for insights into amyloid fibril formation. By combining classical spectroscopies with fluorescence microscopy and by exploiting the fluorescence properties (intensity and lifetime) of the thioflavin T, we were able to noninvasively monitor key and complex molecular aspects of the process. Intriguingly, the fluorescence lifetime imaging-phasor analysis of thioflavin T fluorescence lifetime on structures at different stages of aggregation allowed to decipher the complex fluorescence decay behavior, highlighting that their changes rise from the combination of specific binding to amyloid typical cross-Beta structures and of the rigidity of the molecular environment

    Phasor-FLIM for a direct investigation of Transportan 10 interactions with model membranes

    Get PDF
    Transportan 10 (TP10), a short and positive charged peptide, belonging to the family of the cell penetrating peptides has gained increasing attention for its antimicrobial and anticancer activity but also for its applications in drug delivery as it is able to translocate therapeutic molecules in cellular environment. Due to the complexity of the phenomena involved in cellular uptake and following processes, which strongly depend on the membrane lipid composition, structural details of the peptide (e.g., charge, hydrophobicity, steric hindrance) and environmental conditions, it is not easy to understand the general rules governing them. Here, we combine spectroscopic techniques and fluorescence lifetime imaging microscopy (FLIM) to investigate (i) the fate of the TP10 in the presence of model membranes, analyzing its conformational changes occurring at membrane interface and distinguishing peptide adsorption from insertion into the lipid bilayer (ii) the changes of the fluidity of the membrane and the formation of pores into the latter induced by TP10 interaction. In addition, thanks to the use of the environment sensitive fluorescence dyes, Laurdan and di-4-ANEPPDHQ, and of the phasor approach to analyze FLIM data, we were able to monitor in real time fine events at different depths of phospholipid bilayers

    A Long Journey into the Investigation of the Structure–Dynamics–Function Paradigm in Proteins through the Activities of the Palermo Biophysics Group

    Get PDF
    An overview of the biophysics activity at the Department of Physics and Chemistry Emilio Segrè of the University of Palermo is given. For forty years, the focus of the research has been on the protein structure–dynamics–function paradigm, with the aim of understanding the molecular basis of the relevant mechanisms and the key role of solvent. At least three research lines are identified; the main results obtained in collaboration with other groups in Italy and abroad are presented. This review is dedicated to the memory of Professors Massimo Ugo Palma, Maria Beatrice Palma Vittorelli, and Lorenzo Cordone, which were the founders of the Palermo School of Biophysics. We all have been, directly or indirectly, their pupils; we miss their enthusiasm for scientific research, their deep physical insights, their suggestions, their strict but always constructive criticisms, and, most of all, their friendship. This paper is dedicated also to the memory of Prof. Hans Frauenfelder, whose pioneering works on nonexponential rebinding kinetics, protein substates, and energy landscape have inspired a large part of our work in the field of protein dynamics

    Different a-casein association states and their interaction with lipid vesicles to study antibacterial activity

    Get PDF
    The interactions between caseins and lipid membranes are fundamental for the physiological function of these proteins. Moreover, the understanding of the underlying molecular mechanisms is of great interest for the development of new casein derived antimicrobial peptides. Indeed, it was already shown that peptides derived from caseins possess antibacterial activity but their mechanisms of action is still debated. Here, we present an experimental study on the interaction between model lipid membranes and a-casein by means of spectroscopy and fluorescence microscopy techniques. a-casein is an unfolded protein that due to its amphiphilic nature is known to self-assembly into non-stable micellar structures whose presence, diameter and compactness depend on environmental conditions. Presented experiments are aimed at assessing the effects of this protein in different states (monomeric, micellar and aggregated) on the membranes highlighting the role of micelles.The association state of a-casein at different pH and temperatures was analysed by fluorescence spectroscopy, circular dichroism and dynamic light scattering. Then, a-casein in different states was added to giant lipid vesicles and fluorescence microscopy and spectroscopy techniques were used to map and quantify induced modifications on the membrane. Our results indicate that, depending on the specific properties of the added protein state, different membrane structure and morphology changes occur. Interestingly, the most effective species in altering membranes is constituted by highly hydrophobic oligomers originating from larger aggregates disassembly

    Surface-catalyzed liquid–liquid phase separation and amyloid-like assembly in microscale compartments

    Get PDF
    Liquid-liquid phase separation is a key phenomenon in the formation of membrane-less structures within the cell, appearing as liquid biomolecular condensates. Protein condensates are the most studied for their biological relevance, and their tendency to evolve, resulting in the formation of aggregates with a high level of order called amyloid. In this study, it is demonstrated that Human Insulin forms micrometric, round amyloid-like structures at room temperature within sub-microliter scale aqueous compartments. These distinctive particles feature a solid core enveloped by a fluid-like corona and form at the interface between the aqueous compartment and the glass coverslip upon which they are cast. Quantitative fluorescence microscopy is used to study in real-time the formation of amyloid-like superstructures. Their formation results driven by liquid-liquid phase separation process that arises from spatially heterogeneous distribution of nuclei at the glass-water interface. The proposed experimental setup allows modifying the surface-to-volume ratio of the aqueous compartments, which affects the aggregation rate and particle size, while also inducing fine alterations in the molecular structures of the final assemblies. These findings enhance the understanding of the factors governing amyloid structure formation, shedding light on the catalytic role of surfaces in this process

    Oxidation effects in antiaggregogenic properties of Epigallocatechingallate

    Get PDF
    Epigallocatechin-gallate (EGCG), the most abundant flavonoid in green tea, has been extensively studied for its potential in the treatment of amyloid related disorders. This molecule was found to modulate abnormal protein self-assembly, reducing resulting cellular toxicity. EGCG is known to suppress or to slow down the aggregation processes of several proteins, thus supporting the idea that general mechanisms regulate its anti-aggregogenic effects and, interestingly, in the oxidised form it demonstrated an higher efficiency in reducing protein aggregation with respect to intact molecule. We here investigate the effects of intact and oxidized EGCG the thermal aggregation pathway of Bovine Serum Albumin (BSA), a well-known model protein whose aggregation processes are known in details. By means of different spectroscopic methods, we evaluate similarities and differences of the two molecules during protein aggregation. Different solution conditions are investigated, close and away from the isoelectric point of the protein, with the aim of eliciting the role of electrostatics in the observed EGCG-Protein interaction and in the supramolecular assembly which are dramatically dependent on solution conditions

    Effect of cholesterol on the interaction between amphyphylic peptides and liposomes

    Get PDF
    With the rise of antibiotic resistance, antimicrobial peptides (AMPs) have been proposed as an alternative novel class of therapeutic agents. They are polycationic, with a net positive charge of more than +2, and they are characterized by amphipathic structures, with both a hydrophobic and a hydrophilic domain. These characteristics allow them to selectively bind to negatively charged lipids (largely present in bacteria, not in mammalian cells), via hydrophobic and electrostatic interactions. Moreover, mammalian cells are characterized by a high content of cholesterol. For this reason, here we present an experimental study on the effect of the presence of cholesterol on the capability of amphyphylic peptide Trasportant 10 (TP10) to interact with model membranes with selected composition. The study was performed by means of fluorescence spectroscopy and fluorescence confocal microscopy measurements also exploiting the advantages of phasor plot analysis of Fluorescence Lifetime Imaging (FLIM) measurements. Our results show that the presence of cholesterol inhibits TP-10 interaction with lipid vesicles, the extent of the observed effect being dependent on the cholesterol concentration in the membrane

    Electrostatics regulate Epigallocatechin-Gallate effects on Bovine Serum Albumin aggregation

    Get PDF
    Protein aggregation processes are complex phenomena often involved in the etiology of several pathologies. It is now assessed that all proteins, in suitable conditions, may undergo supramolecular assembly. Aggregation pathways are known to be controlled by solution conditions which regulate protein-protein and protein-solvent interactions affecting binding mechanisms, morphology and inherent toxicity of the aggregate species. In this context, the presence of small molecules was indicated as a promising method to modulate protein-protein interactions reducing pathogenic aggregation. In the light of the idea that common mechanisms regulate anti-aggregogenic properties of small molecules, we here investigate Epigallocatechin-Gallate (EGCG) effects on the thermal aggregation pathway of Bovine Serum Albumin (BSA), a well-known model protein. EGCG is a small molecule extracted from green tea, which is known to reduce aggregation of key proteins involved in neurodegenerative diseases [1]. Fundamental mechanisms which regulate EGCG effectiveness as therapeutic molecule are still not clearly elucidated. The interaction of EGCG with BSA and its effects on thermal aggregation pathway were investigated by means of spectroscopic methods and Isothermal Titration calorimetry as a function of solution conditions. Results show that electrostatic forces modulated by pH play a key role in regulating EGCG interactions with BSA. Data shows that close to the isoelectric point of the protein, EGCG is found to promote the supramolecular assembly, whilst away from the isoelectric point, EGCG is found to reduce aggregation mechanisms increasing protein conformational stability. These results reveal the large impact of electrostatics in small molecules effects on the protein aggregation phenomena requiring larger investigation aimed at rationalizing their effects on related pathogenic mechanisms

    Development of a biosensor for copper detection in aqueous solutions using an Anemonia sulcata recombinant GFP

    Get PDF
    Fluorescent proteins from marine organisms represent potential candidates for biosensor development. In this paper, we described the isolation of a native green fluorescent protein from Anemonia sulcata and the cloning and purification of its equivalent as a recombinant protein in Escherichia coli. Furthermore, the spectroscopic behaviours of the native and recombinant GFPs were investigated as a function of Cu2+, Cd2+, Pb 2+ and Ni2+ concentration. Our results suggest the high selectivity of both proteins at copper than the other metals and, for the recombinant protein, a great sensitivity at a very low concentration (0.1-1 μM). Moreover, starting from these data, using the combination of molecular biology techniques and optical setup, we developed a device for the detection of Cu2+ in water solutions. The quenching effect detected with the device showed that the relative attenuation of the signal (0.46±0.02 AU) was slightly larger than the data measured by fluorescence spectra (0.65±0.03 AU). The good sensitivity in the span of two orders of the magnitude of Cu2+ concentration, the fact that the instrument is made up of low-cost and sturdy parts and the selective quenching of rAsGFP to copper ions make this setup suited as a low cost, on-the-field, copper ion-specific biosensor. © 2013 Springer Science+Business Media
    • …
    corecore