64 research outputs found

    A great gap of programs for protection of biodiversity : genetic resources, an example: sessile oak

    Get PDF
    Les ressources gĂ©nĂ©tiques font partie d’un des trois niveaux de la biodiversitĂ©. Dans cet article, nous prĂ©senterons la problĂ©matique de leur conservation en prenant l’exemple du ChĂȘne sessile et en particulier de l’UnitĂ© de conservation des ressources gĂ©nĂ©tiques de la forĂȘt communale de VachĂšres.Genetics resources belong to one level of the biodiversity. In this paper, we introduce the gene conservation problematic with the example of sessile oak with a focus on the genes conservation unit of the Vacheres forest

    The Mediator complex subunit MED25 is targeted by the N-terminal transactivation domain of the PEA3 group members

    Get PDF
    International audiencePEA3, ERM and ER81 belong to the PEA3 subfamily of Ets transcription factors and play important roles in a number of tissue-specific processes. Transcriptional activation by PEA3 subfamily factors requires their characteristic amino-terminal acidic transactivation domain (TAD). However, the cellular targets of this domain remain largely unknown. Using ERM as a prototype, we show that the minimal N-terminal TAD activates transcription by contacting the activator interacting domain (ACID)/Prostate tumor overexpressed protein 1 (PTOV) domain of the Mediator complex subunit MED25. We further show that depletion of MED25 disrupts the association of ERM with the Mediator in vitro . Small interfering RNA-mediated knockdown of MED25 as well as the overexpression of MED25-ACID and MED25-VWA domains efficiently inhibit the transcriptional activity of ERM. Moreover, mutations of amino acid residues that prevent binding of MED25 to ERM strongly reduce transactivation by ERM. Finally we show that siRNA depletion of MED25 diminishes PEA3-driven expression of MMP-1 and Mediator recruitment. In conclusion, this study identifies the PEA3 group members as the first human transcriptional factors that interact with the MED25 ACID/PTOV domain and establishes MED25 as a crucial transducer of their transactivation potential

    PLGA-PEG-COOH nanoparticles are efficient systems for delivery of mefloquine to Echinococcus multilocularis metacestodes.

    Get PDF
    Alveolar echinococcosis (AE) is a severe disease caused by the infection with the larval stage of Echinococcus multilocularis, the metacestode. As there is no actual curative drug therapy, recommendations to manage AE patients are based on radical surgery and prophylactic administration of albendazole or mebendazole during 2 years to prevent relapses. There is an urgent need for new therapeutic strategies for the management of AE, as the drugs in use are only parasitostatic, and can induce toxicity. This study aimed at developing a drug delivery system for mefloquine, an antiparasitic compound which is highly active against E. multilocularis in vitro and in experimentally infected mice. We formulated mefloquine-loaded PLGA-PEG-COOH (poly-(lactic-co-glycolic acid)) nanoparticles that exhibit stable physical properties and mefloquine content. These nanoparticles crossed the outer acellular laminated layer of metacestodes in vitro and delivered their content to the inner germinal layer within less than 5 min. The in vitro anti-echinococcal activity of mefloquine was not altered during the formulation process. However, toxicity against hepatocytes was not reduced when compared to free mefloquine. Altogether, this study shows that mefloquine-loaded PLGA-PEG-COOH nanoparticles are promising candidates for drug delivery during AE treatment. However, strategies for direct parasite-specific targeting of these particles should be developed

    Élaboration et Ă©valuations in vitro de nanoparticules Ă  clusters mĂ©talliques pour la thĂ©rapie photodynamique du cancer ovarien

    Full text link
    With a mortality rate of 4.8 per 100,000, ovarian cancer is the 4th leading cause of death by cancer in women. Photodynamic therapy (PDT) is an innovative technique based on the destruction of malignant cells by reactive oxygen species (ROS), usually singlet oxygen (1O2) through excitation of photosensitizers (PS). Hexanuclear molybdenum halide cluster complexes with the general formula (Mo6 La8Li6)2−, La=halogen; Li=halogen or organic ligands have been widely studied due to their photophysical and photo-chemical properties. When photoactivated, these complexes can either exhibit photoluminescence in the 550–900 nm emission window which is of interest for bio-imaging and biolabeling or in the presence of oxygen, they can act as powerful photosensitizers and generate singlet oxygen. To make clustered patterns stable in water and avoid photobleaching, clusters must be encapsulated. These clusters, original photosensitizers, are therefore incorporated into biocompatible drug delivery systems which will be tested in vitro to evaluate their different properties, their cytotoxicity as well as their efficiency. This work on ovarian cancer may be a springboard to PDT treatment of various solid tumors cancers (prostate, lung, and pancreas). This study is relatively innovative in view of the current state of clinical use of PDT.Avec un taux de mortalitĂ© de 4,8 pour 100 000, le cancer de l'ovaire est la quatriĂšme cause de dĂ©cĂšs par cancer chez la femme. La thĂ©rapie photodynamique (PDT) est une technique innovante basĂ©e sur la destruction des cellules malignes par des espĂšces rĂ©actives de l'oxygĂšne (ROS), gĂ©nĂ©ralement l'oxygĂšne singulet (1O2), par excitation de photosensibilisants (PS). Les complexes hexanuclĂ©aire de cluster d'halogĂ©nure de molybdĂšne de formule gĂ©nĂ©rale (Mo6La8Li6)2-, La=halogĂšne ; Li=halogĂšne ou ligands organiques ont Ă©tĂ© largement Ă©tudiĂ©s en raison de leurs propriĂ©tĂ©s photophysiques et photochimiques. Lorsqu'ils sont photo-activĂ©s, ces complexes peuvent prĂ©senter une photoluminescence dans la fenĂȘtre d'Ă©mission de 550 Ă  900 nm, ce qui est intĂ©ressant pour la bioimagerie et le bio-marquage, ou en prĂ©sence d'oxygĂšne, ils peuvent agir comme de puissants photosensibilisateurs et gĂ©nĂ©rer de l'oxygĂšne singulet. Pour rendre les composĂ©s Ă  clusters stables dans l'eau et Ă©viter le photoblanchiment, les clusters doivent ĂȘtre encapsulĂ©es. Ces clusters, photosensibilisants uniques, sont donc incorporĂ©s dans des systĂšmes de dĂ©livrance biocompatibles qui seront testĂ©s in vitro pour Ă©valuer leurs diffĂ©rentes propriĂ©tĂ©s, leur cytotoxicitĂ© ainsi que leur efficacitĂ©. Ce travail sur le cancer de l'ovaire peut ĂȘtre un tremplin pour le traitement par PDT de divers cancers solides (prostate, poumon et pancrĂ©as). Cette Ă©tude est relativement innovante au regard de l'Ă©tat actuel de l'utilisation clinique de la PDT

    MECANISMES MOLECULAIRES DU RECRUTEMENT DE L’HETERODIMERE FOS/JUN PAR LA PROTEINE ERG, MEMBRE DES FACTEURS DE TRANSCRIPTION DE LA FAMILLE ETS

    Get PDF
    Jun, Fos, and Ets proteins belong to distinct families of transcription factors that target specific DNA elements often found jointly in gene promoters. Physical and functional interactions between these families play important roles in modulating gene expression. Previous studies have demonstrated a direct interaction between the DNA-binding domains of the two partners. However, the molecular details of the interactions have not been investigated so far. Here we used the knownthree-dimensional structures of the ETS DNA-binding domain and Jun/Fos heterodimer to model an ETS-Jun/Fos-DNA ternary complex. Docking procedures suggested that certain ETS domain residues in the DNA recognition helix H3 interact with the N-terminal basic domain of Jun. To support the model, different Erg ETS domain mutants were obtained by deletion or by single amino acid substitutions and were tested for their ability to mediate DNA binding, Erg-Jun/Fos complex formation, and transcriptional activation. We identified point mutations that affect both the DNA binding properties of Erg and its physical interaction with Jun (R367K), as well as mutations that essentially prevent transcriptional synergy with the Jun/Fos heterodimer (Y371V). These results provide a framework of the ETS/ bZIP interaction linked to the manifestation of functional activity in gene regulation.La famille des gĂšnes ETS code des facteurs de transcription impliquĂ©s dans denombreux processus physiologiques tels que la diffĂ©renciation, la prolifĂ©ration cellulaire ou lamorphogenĂšse. Ces facteurs se caractĂ©risent par la prĂ©sence d’un domaine de liaison Ă  l’ADNtrĂšs conservĂ©, appelĂ© domaine ETS. L’accroissement continu du nombre de membres ainsique leurs nombreuses propriĂ©tĂ©s communes, posent la question du rĂŽle spĂ©cifique de chacunedes protĂ©ines ETS. Dans ce contexte, je me suis plus particuliĂšrement intĂ©ressĂ© Ă  lacaractĂ©risation des domaines fonctionnels de la protĂ©ine ERG.Nos premiĂšres Ă©tudes d’interactions protĂ©iques in vitro et de rĂ©gulationtranscriptionnelle indiquent que le domaine ETS est non seulement responsable de la fixationĂ  l’ADN, mais qu’il constitue une surface d’interaction privilĂ©giĂ©e permettant le recrutementd’autres facteurs de transcription, en particulier l’hĂ©tĂ©rodimĂšre FOS/JUN. Par une stratĂ©gie demodĂ©lisation molĂ©culaire du complexe ternaire ERG-JUN/FOS-ADN, couplĂ©e Ă  laconstruction de mutants de dĂ©lĂ©tion et de mutations ponctuelles du domaine ETS, nous avonspu identifier les acides aminĂ©s impliquĂ©s dans l’une ou l’autre de ces fonctions. Par ailleurs,nous avons aussi montrĂ© que le domaine transactivateur C-terminal de la protĂ©ine ERG Ă©taitun Ă©lĂ©ment essentiel dans la coopĂ©ration transcriptionnelle. Tous ces rĂ©sultats nous permettentde proposer un mĂ©canisme de recrutement du complexe FOS/JUN en deux Ă©tapes, impliquantĂ  la fois le domaine ETS et le domaine C-terminal des protĂ©ines ERG

    Élaboration et Ă©valuations in vitro de nanoparticules Ă  clusters mĂ©talliques pour la thĂ©rapie photodynamique du cancer ovarien

    Full text link
    With a mortality rate of 4.8 per 100,000, ovarian cancer is the 4th leading cause of death by cancer in women. Photodynamic therapy (PDT) is an innovative technique based on the destruction of malignant cells by reactive oxygen species (ROS), usually singlet oxygen (1O2) through excitation of photosensitizers (PS). Hexanuclear molybdenum halide cluster complexes with the general formula (Mo6 La8Li6)2−, La=halogen; Li=halogen or organic ligands have been widely studied due to their photophysical and photo-chemical properties. When photoactivated, these complexes can either exhibit photoluminescence in the 550–900 nm emission window which is of interest for bio-imaging and biolabeling or in the presence of oxygen, they can act as powerful photosensitizers and generate singlet oxygen. To make clustered patterns stable in water and avoid photobleaching, clusters must be encapsulated. These clusters, original photosensitizers, are therefore incorporated into biocompatible drug delivery systems which will be tested in vitro to evaluate their different properties, their cytotoxicity as well as their efficiency. This work on ovarian cancer may be a springboard to PDT treatment of various solid tumors cancers (prostate, lung, and pancreas). This study is relatively innovative in view of the current state of clinical use of PDT.Avec un taux de mortalitĂ© de 4,8 pour 100 000, le cancer de l'ovaire est la quatriĂšme cause de dĂ©cĂšs par cancer chez la femme. La thĂ©rapie photodynamique (PDT) est une technique innovante basĂ©e sur la destruction des cellules malignes par des espĂšces rĂ©actives de l'oxygĂšne (ROS), gĂ©nĂ©ralement l'oxygĂšne singulet (1O2), par excitation de photosensibilisants (PS). Les complexes hexanuclĂ©aire de cluster d'halogĂ©nure de molybdĂšne de formule gĂ©nĂ©rale (Mo6La8Li6)2-, La=halogĂšne ; Li=halogĂšne ou ligands organiques ont Ă©tĂ© largement Ă©tudiĂ©s en raison de leurs propriĂ©tĂ©s photophysiques et photochimiques. Lorsqu'ils sont photo-activĂ©s, ces complexes peuvent prĂ©senter une photoluminescence dans la fenĂȘtre d'Ă©mission de 550 Ă  900 nm, ce qui est intĂ©ressant pour la bioimagerie et le bio-marquage, ou en prĂ©sence d'oxygĂšne, ils peuvent agir comme de puissants photosensibilisateurs et gĂ©nĂ©rer de l'oxygĂšne singulet. Pour rendre les composĂ©s Ă  clusters stables dans l'eau et Ă©viter le photoblanchiment, les clusters doivent ĂȘtre encapsulĂ©es. Ces clusters, photosensibilisants uniques, sont donc incorporĂ©s dans des systĂšmes de dĂ©livrance biocompatibles qui seront testĂ©s in vitro pour Ă©valuer leurs diffĂ©rentes propriĂ©tĂ©s, leur cytotoxicitĂ© ainsi que leur efficacitĂ©. Ce travail sur le cancer de l'ovaire peut ĂȘtre un tremplin pour le traitement par PDT de divers cancers solides (prostate, poumon et pancrĂ©as). Cette Ă©tude est relativement innovante au regard de l'Ă©tat actuel de l'utilisation clinique de la PDT

    Development and In vitro evaluation of nanoparticles embedding metallic clusters for photodynamic therapy of ovarian cancer

    Full text link
    Avec un taux de mortalitĂ© de 4,8 pour 100 000, le cancer de l'ovaire est la quatriĂšme cause de dĂ©cĂšs par cancer chez la femme. La thĂ©rapie photodynamique (PDT) est une technique innovante basĂ©e sur la destruction des cellules malignes par des espĂšces rĂ©actives de l'oxygĂšne (ROS), gĂ©nĂ©ralement l'oxygĂšne singulet (1O2), par excitation de photosensibilisants (PS). Les complexes hexanuclĂ©aire de cluster d'halogĂ©nure de molybdĂšne de formule gĂ©nĂ©rale (Mo6La8Li6)2-, La=halogĂšne ; Li=halogĂšne ou ligands organiques ont Ă©tĂ© largement Ă©tudiĂ©s en raison de leurs propriĂ©tĂ©s photophysiques et photochimiques. Lorsqu'ils sont photo-activĂ©s, ces complexes peuvent prĂ©senter une photoluminescence dans la fenĂȘtre d'Ă©mission de 550 Ă  900 nm, ce qui est intĂ©ressant pour la bioimagerie et le bio-marquage, ou en prĂ©sence d'oxygĂšne, ils peuvent agir comme de puissants photosensibilisateurs et gĂ©nĂ©rer de l'oxygĂšne singulet. Pour rendre les composĂ©s Ă  clusters stables dans l'eau et Ă©viter le photoblanchiment, les clusters doivent ĂȘtre encapsulĂ©es. Ces clusters, photosensibilisants uniques, sont donc incorporĂ©s dans des systĂšmes de dĂ©livrance biocompatibles qui seront testĂ©s in vitro pour Ă©valuer leurs diffĂ©rentes propriĂ©tĂ©s, leur cytotoxicitĂ© ainsi que leur efficacitĂ©. Ce travail sur le cancer de l'ovaire peut ĂȘtre un tremplin pour le traitement par PDT de divers cancers solides (prostate, poumon et pancrĂ©as). Cette Ă©tude est relativement innovante au regard de l'Ă©tat actuel de l'utilisation clinique de la PDT.With a mortality rate of 4.8 per 100,000, ovarian cancer is the 4th leading cause of death by cancer in women. Photodynamic therapy (PDT) is an innovative technique based on the destruction of malignant cells by reactive oxygen species (ROS), usually singlet oxygen (1O2) through excitation of photosensitizers (PS). Hexanuclear molybdenum halide cluster complexes with the general formula (Mo6 La8Li6)2−, La=halogen; Li=halogen or organic ligands have been widely studied due to their photophysical and photo-chemical properties. When photoactivated, these complexes can either exhibit photoluminescence in the 550–900 nm emission window which is of interest for bio-imaging and biolabeling or in the presence of oxygen, they can act as powerful photosensitizers and generate singlet oxygen. To make clustered patterns stable in water and avoid photobleaching, clusters must be encapsulated. These clusters, original photosensitizers, are therefore incorporated into biocompatible drug delivery systems which will be tested in vitro to evaluate their different properties, their cytotoxicity as well as their efficiency. This work on ovarian cancer may be a springboard to PDT treatment of various solid tumors cancers (prostate, lung, and pancreas). This study is relatively innovative in view of the current state of clinical use of PDT

    MED25 interaction site with the TAD of ERM

    Full text link
    <p>Pylmol session of the protein-protein docking model.</p

    Une grande lacune des programmes de protection de la biodiversitĂ© : les ressources gĂ©nĂ©tiques, un exemple le chĂȘne sessile

    Full text link
    Les ressources gĂ©nĂ©tiques font partie d’un des trois niveaux de la biodiversitĂ©. Dans cet article, nous prĂ©senterons la problĂ©matique de leur conservation en prenant l’exemple du ChĂȘne sessile et en particulier de l’UnitĂ© de conservation des ressources gĂ©nĂ©tiques de la forĂȘt communale de VachĂšres

    Une grande lacune des programmes de protection de la biodiversitĂ© : les ressources gĂ©nĂ©tiques, un exemple le chĂȘne sessile

    Full text link
    Les ressources gĂ©nĂ©tiques font partie d’un des trois niveaux de la biodiversitĂ©. Dans cet article, nous prĂ©senterons la problĂ©matique de leur conservation en prenant l’exemple du ChĂȘne sessile et en particulier de l’UnitĂ© de conservation des ressources gĂ©nĂ©tiques de la forĂȘt communale de VachĂšres
    • 

    corecore