4,610 research outputs found
Mass Density Profiles of LSB Galaxies
We derive the mass density profiles of dark matter halos that are implied by
high spatial resolution rotation curves of low surface brightness galaxies. We
find that at small radii, the mass density distribution is dominated by a
nearly constant density core with a core radius of a few kpc. For rho(r) ~ r^a,
the distribution of inner slopes a is strongly peaked around a = -0.2. This is
significantly shallower than the cuspy a < -1 halos found in CDM simulations.
While the observed distribution of alpha does have a tail towards such extreme
values, the derived value of alpha is found to depend on the spatial resolution
of the rotation curves: a ~ -1 is found only for the least well resolved
galaxies. Even for these galaxies, our data are also consistent with constant
density cores (a = 0) of modest (~ 1 kpc) core radius, which can give the
illusion of steep cusps when insufficiently resolved. Consequently, there is no
clear evidence for a cuspy halo in any of the low surface brightness galaxies
observed.Comment: To be published in ApJ Letters. 6 pages. Uses aastex and
emulateapj5.sty Typo in Eq 1 fixe
Recommended from our members
Shock recovery experiments confirm the possibility of transferring viable microorganisms from Mars to Earth
Extract from introduction: With regard to the impact and ejection phase we tested the case for the transfer of microorganisms from Mars to Earth. Using a high explosive set-up thin layers of bacterial endospores of Bacillus subtilis, of the lichen Xanthoria elegans and of the cyanobacterium Chroococcidiopsis sp. embedded between two plates of gabbro were subjected to 10, 20, 30, 40 and 50 GPa which is the pressure range observed in Martian meteorites [1]
Recommended from our members
Life after shock: the mission from Mars to Earth
Extract from introduction: The minerals of the Martian meteorites collected so far indicate an exposure to shock waves in the pressure range of 5 to 55 GPa [1]. As terrestrial rocks are frequently inhabited by microbial communities, rocks ejected from a planet by impact processes may carry with them endolithic microorganisms, if microbial life existed/exists on this planet
Recommended from our members
Impact experiments in support of “Lithopanspermia”: The route from Mars to Earth
Shock recovery experiments on a Martian analogue rock (gabbro) loaded with three types of microorganisms reveal that these organisms survive the impact and ejection phase on Mars at shock pressures up to about 50 GPa with exponentially decreasing survival rates
Recommended from our members
The influence of shock pressure, pre-shock temperature, and host rock composition on the survival rate of endolithic microorganisms during impact ejection from Mars
Petrographic and biological analysis of shock recovery experiments confirms the possible life transport due to an impact from Mars to Earth
High-resolution rotation curves of low surface brightness galaxies: Data
We present long slit Halpha observations of 50 low surface brightness
galaxies. Of these, 36 are of sufficient quality to form rotation curves. These
data provide a large increase in the number of low surface brightness galaxies
for which accurate rotation curves are available. They also represent an order
of magnitude improvement in spatial resolution over previous 21 cm studies (1"
to 2" instead of 13" to 45"). The improved resolution and accuracy of the data
extend and strengthen the scientific conclusions previously inferred from 21 cm
data.Comment: Accepted for publication in the Astronomical Journal. Electronic
versions of the data are available at http://www.astro.umd.edu/~ssm/data &
http://www.atnf.csiro.au/~edeblok/dat
THE HIGH CADENCE TRANSIENT SURVEY (HITS). I. SURVEY DESIGN AND SUPERNOVA SHOCK BREAKOUT CONSTRAINTS
Indexación: Web of Science; Scopus.We present the first results of the High Cadence Transient Survey (HiTS), a survey for which the objective is to detect and follow-up optical transients with characteristic timescales from hours to days, especially the earliest hours of supernova (SN) explosions. HiTS uses the Dark Energy Camera and a custom pipeline for image subtraction, candidate filtering and candidate visualization, which runs in real-time to be able to react rapidly to the new transients. We discuss the survey design, the technical challenges associated with the real-time analysis of these large volumes of data and our first results. In our 2013, 2014, and 2015 campaigns, we detected more than 120 young SN candidates, but we did not find a clear signature from the short-lived SN shock breakouts (SBOs) originating after the core collapse of red supergiant stars, which was the initial science aim of this survey. Using the empirical distribution of limiting magnitudes from our observational campaigns, we measured the expected recovery fraction of randomly injected SN light curves, which included SBO optical peaks produced with models from Tominaga et al. (2011) and Nakar & Sari (2010). From this analysis, we cannot rule out the models from Tominaga et al. (2011) under any reasonable distributions of progenitor masses, but we can marginally rule out the brighter and longer-lived SBO models from Nakar & Sari (2010) under our best-guess distribution of progenitor masses. Finally, we highlight the implications of this work for future massive data sets produced by astronomical observatories, such as LSST.http://iopscience.iop.org/article/10.3847/0004-637X/832/2/155/meta;jsessionid=76BDFFFE378003616F6DBA56A9225673.c4.iopscience.cld.iop.or
Resistance of Antarctic black fungi and cryptoendolithic communities to simulated space and Martian conditions
Dried colonies of the Antarctic rock-inhabiting meristematic fungi
Cryomyces antarcticus CCFEE 515, CCFEE 534 and C. minteri
CCFEE 5187, as well as fragments of rocks colonized by the Antarctic
cryptoendolithic community, were exposed to a set of ground-based experiment
verification tests (EVTs) at the German Aerospace Center (DLR, Köln,
Germany). These were carried out to test the tolerance of these organisms in
view of their possible exposure to space conditions outside of the
International Space Station (ISS). Tests included single or combined simulated
space and Martian conditions. Responses were analysed both by cultural and
microscopic methods. Thereby, colony formation capacities were measured and
the cellular viability was assessed using live/dead dyes FUN 1 and SYTOX
Green. The results clearly suggest a general good resistance of all the
samples investigated. C. minteri CCFEE 5187, C. antarcticus
CCFEE 515 and colonized rocks were selected as suitable candidates to
withstand space flight and long-term permanence in space on the ISS in the
framework of the LIchens and Fungi Experiments (LIFE programme, European Space
Agency)
Endothelial damage, inflammation and immunity in chronic kidney disease
Chronic kidney disease (CKD) patients have an accelerated atherosclerosis, increased risk of thrombotic-ischemic complications, and excessive mortality rates when compared with the general population. There is also evidence of an endothelial damage in which the proinflammatory state, the enhanced oxidative stress, or the accumulation of toxins due to their reduced renal clearance in uremia play a role. Further, there is evidence that uremic endothelial cells are both involved in and victims of the activation of the innate immunity. Uremic endothelial cells produce danger associated molecular patterns (DAMPS), which by binding to specific pattern recognition receptors expressed in multiple cells, including endothelial cells, induce the expression of adhesion molecules, the production of proinflammatory cytokines and an enhanced production of reactive oxygen species in endothelial cells, which constitute a link between immunity and inflammation. The connection between endothelial damage, inflammation and defective immunity in uremia will be reviewed here
The satellites of the Milky Way – insights from semi-analytic modelling in a ΛCDM cosmology
We combine the six high-resolution Aquarius dark matter simulations with a semi-analytic galaxy formation model to investigate the properties of the satellites of Milky Way-like galaxies. We find good correspondence with the observed luminosity function, luminosity–metallicity relation and radial distribution of the Milky Way satellites. The star formation histories of the dwarf galaxies in our model vary widely, in accordance with what is seen observationally. Some systems are dominated by old populations, whereas others are dominated by intermediate populations; star formation histories can either be continuous or more bursty. Ram-pressure stripping of hot gas from the satellites leaves a clear imprint of the environment on the characteristics of a dwarf galaxy. We find that the fraction of satellites dominated by old populations of stars matches observations well. However, the internal metallicity distributions of the model satellites appear to be narrower than observed. This may indicate limitations in our treatment of chemical enrichment, which is based on the instantaneous recycling approximation. We find a strong correlation between the number of satellites and the dark matter mass of the host halo. Our model works best if the dark matter halo of the Milky Way has a mass of ∼8 × 1011 M⊙, in agreement with the lower estimates from observations, but about a factor of 2 lower than estimates based on the Local Group timing argument or abundance matching techniques. The galaxy that resembles the Milky Way the most also has the best-matching satellite luminosity function, although it does not contain an object as bright as the Large or Small Magellanic Cloud. Compared to other semi-analytic models and abundance matching relations we find that central galaxies reside in less massive haloes, but the halo mass–stellar mass relation in our model is consistent both with hydrodynamical simulations and with recent observations
- …