484 research outputs found
Highly Collimated Jets and Wide-Angle Outflows in HH46/47: New Evidence from Spitzer IR Images
We present new details of the structure and morphology of the jets and
outflows in HH46/47 as seen in Spitzer infrared images from IRAC and MIPS,
reprocessed using the ``HiRes'' deconvolution technique. HiRes improves the
visualization of spatial morphology by enhancing resolution (to sub-arcsec
levels in IRAC bands) and removing the contaminating side lobes from bright
sources. In addition to sharper views of previously reported bow shocks, we
have detected: (i) the sharply-delineated cavity walls of the wide-angle
biconical outflow, seen in scattered light on both sides of the protostar, (ii)
several very narrow jet features at distances 400 AU to 0.1 pc from the star,
and, (iii) compact emissions at MIPS 24 micron coincident with the jet heads,
tracing the hottest atomic/ionic gas in the bow shocks.Comment: 11 pages, 4 Figures, Accepted for publication in ApJ(Letters
Point Process Algorithm: A New Bayesian Approach for Planet Signal Extraction with the Terrestrial Planet Finder
The capability of the Terrestrial Planet Finder Interferometer (TPF-I) for
planetary signal extraction, including both detection and spectral
characterization, can be optimized by taking proper account of instrumental
characteristics and astrophysical prior information. We have developed the
Point Process Algorithm (PPA), a Bayesian technique for extracting planetary
signals using the sine-chopped outputs of a dual nulling interferometer. It is
so-called because it represents the system being observed as a set of points in
a suitably-defined state space, thus providing a natural way of incorporating
our prior knowledge of the compact nature of the targets of interest. It can
also incorporate the spatial covariance of the exozodi as prior information
which could help mitigate against false detections. Data at multiple
wavelengths are used simultaneously, taking into account possible spectral
variations of the planetary signals. Input parameters include the RMS
measurement noise and the a priori probability of the presence of a planet. The
output can be represented as an image of the intensity distribution on the sky,
optimized for the detection of point sources. Previous approaches by others to
the problem of planet detection for TPF-I have relied on the potentially
non-robust identification of peaks in a "dirty" image, usually a correlation
map. Tests with synthetic data suggest that the PPA provides greater
sensitivity to faint sources than does the standard approach (correlation map +
CLEAN), and will be a useful tool for optimizing the design of TPF-I.Comment: 17 pages, 6 figures. AJ in press (scheduled for Nov 2006
HiRes deconvolution of Spitzer infrared images
Spitzer provides unprecedented sensitivity in the infrared (IR), but the spatial resolution is limited by a relatively small aperture (0.85 m) of the primary mirror. In order to maximize the scientific return it is desirable to use processing techniques which make the optimal use of the spatial information in the observations. We have developed a deconvolution technique for Spitzer images. The algorithm, "HiRes" and its implementation has been discussed by Backus et al. in 2005. Here we present examples of Spitzer IR images from the Infrared Array Camera (IRAC) and MIPS, reprocessed using this technique. Examples of HiRes processing include a variety of objects from point sources to complex extended regions. The examples include comparison of Spitzer deconvolved images with high-resolution Keck and Hubble Space Telescope images. HiRes deconvolution improves the visualization of spatial morphology by enhancing resolution (to sub-arcsecond levels in the IRAC bands) and removing the contaminating sidelobes from bright sources. The results thereby represent a significant improvement over previously-published Spitzer images. The benefits of HiRes include (a) sub-arcsec resolution (~0".6-0".8 for IRAC channels); (b) the ability to detect sources below the diffraction-limited confusion level; (c) the ability to separate blended sources, and thereby provide guidance to point-source extraction procedures; (d) an improved ability to show the spatial morphology of resolved sources. We suggest that it is a useful technique to identify features which are interesting enough for follow-up deeper analysis
Dichotomy in the Dynamical Status of Massive Cores in Orion
To study the evolution of high mass cores, we have searched for evidence of
collapse motions in a large sample of starless cores in the Orion molecular
cloud. We used the Caltech Submillimeter Observatory telescope to obtain
spectra of the optically thin (\H13CO+) and optically thick (\HCO+) high
density tracer molecules in 27 cores with masses 1 \Ms. The red- and
blue-asymmetries seen in the line profiles of the optically thick line with
respect to the optically thin line indicate that 2/3 of these cores are not
static. We detect evidence for infall (inward motions) in 9 cores and outward
motions for 10 cores, suggesting a dichotomy in the kinematic state of the
non-static cores in this sample. Our results provide an important observational
constraint on the fraction of collapsing (inward motions) versus non-collapsing
(re-expanding) cores for comparison with model simulations.Comment: 9 pages, 2 Figures. To appear in ApJ(Letters
The Local Radio-IR Relation in M51
We observed M51 at three frequencies, 1.4 GHz (20 cm), 4.9 GHz (6 cm), and 8.4 GHz (3.6 cm), with the Very Large Array and the Effelsberg 100 m telescope to obtain the highest quality radio continuum images of a nearby spiral galaxy. These radio data were combined with deconvolved Spitzer IRAC 8 μm and MIPS 24 μm images to search for and investigate local changes in the radio-IR correlation. Utilizing wavelet decomposition, we compare the distribution of the radio and IR emission on spatial scales between 200 pc and 30 kpc. We show that the radio-IR correlation is not uniform across the galactic disk. It presents a complex behavior with local extrema corresponding to various galactic structures, such as complexes of H II regions, spiral arms, and interarm filaments, indicating that the contribution of the thermal and non-thermal radio emission is a strong function of environment. In particular, the relation of the 24 μm and 20 cm emission presents a linear relation within the spiral arms and globally over the galaxy, while it deviates from linearity in the interarm and outer regions as well in the inner region, with two different behaviors: it is sublinear in the interarm and outer region and overlinear in the central 3.5 kpc. Our analysis suggests that the changes in the radio/IR correlation reflect variations of interstellar medium properties between spiral arms and interarm region. The good correlation in the spiral arms implies that 24 μm and 20 cm are tracing recent star formation, while a change in the dust opacity, "Cirrus" contribution to the IR emission and/or the relation between the magnetic field strength and the gas density can explain the different relations found in the interarm, outer, and inner regions
A Herschel [C II] Galactic plane survey II: CO-dark H2 in clouds
ABRIDGED: Context: HI and CO large scale surveys of the Milky Way trace the
diffuse atomic clouds and the dense shielded regions of molecular hydrogen
clouds. However, until recently, we have not had spectrally resolved C+ surveys
to characterize the photon dominated interstellar medium, including, the H2 gas
without C, the CO-dark H2, in a large sample of clouds. Aims: To use a sparse
Galactic plane survey of the 1.9 THz [C II] spectral line from the Herschel
Open Time Key Programme, Galactic Observations of Terahertz C+ (GOT C+), to
characterize the H2 gas without CO in a statistically significant sample of
clouds. Methods: We identify individual clouds in the inner Galaxy by fitting
[CII] and CO isotopologue spectra along each line of sight. We combine these
with HI spectra, along with excitation models and cloud models of C+, to
determine the column densities and fractional mass of CO-dark H2 clouds.
Results: We identify 1804 narrow velocity [CII] interstellar cloud components
in different categories. About 840 are diffuse molecular clouds with no CO, 510
are transition clouds containing [CII] and 12CO, but no 13CO, and the remainder
are dense molecular clouds containing 13CO emission. The CO-dark H2 clouds are
concentrated between Galactic radii 3.5 to 7.5 kpc and the column density of
the CO-dark H2 layer varies significantly from cloud-to-cloud with an average
9X10^(20) cm-2. These clouds contain a significant fraction of CO-dark H2 mass,
varying from ~75% for diffuse molecular clouds to ~20% for dense molecular
clouds. Conclusions: We find a significant fraction of the warm molecular ISM
gas is invisible in HI and CO, but is detected in [CII]. The fraction of
CO-dark H2 is greatest in the diffuse clouds and decreases with increasing
total column density, and is lowest in the massive clouds.Comment: 21 pages, 19 figures, accepted for publication in A&A (2014
- …