62 research outputs found

    First Same-Sex Partner and the Internet

    Get PDF
    The present study examined the first episode of anal intercourse of young gay and bisexual men (YGBM) who were in the midst of their coming-out. Cross-sectional data regarding the first episode of anal intercourse were extracted from Outcomes, a longitudinal study on coming-out and sexual behavior of YGBM in the Netherlands. Overall, 45% of respondents reported unprotected anal intercourse (UAI) with their first same-sex partner. Rates of UAI did not significantly differ between meeting place (offline vs. online) and partner status (steady, regular or casual)

    Chaperonin Containing T-Complex Polypeptide Subunit Eta (CCT-eta) Is a Specific Regulator of Fibroblast Motility and Contractility

    Get PDF
    Integumentary wounds in mammalian fetuses heal without scar; this scarless wound healing is intrinsic to fetal tissues and is notable for absence of the contraction seen in postnatal (adult) wounds. The precise molecular signals determining the scarless phenotype remain unclear. We have previously reported that the eta subunit of the chaperonin containing T-complex polypeptide (CCT-eta) is specifically reduced in healing fetal wounds in a rabbit model. In this study, we examine the role of CCT-eta in fibroblast motility and contractility, properties essential to wound healing and scar formation. We demonstrate that CCT-eta (but not CCT-beta) is underexpressed in fetal fibroblasts compared to adult fibroblasts. An in vitro wound healing assay demonstrated that adult fibroblasts showed increased cell migration in response to epidermal growth factor (EGF) and platelet derived growth factor (PDGF) stimulation, whereas fetal fibroblasts were unresponsive. Downregulation of CCT-eta in adult fibroblasts with short inhibitory RNA (siRNA) reduced cellular motility, both basal and growth factor-induced; in contrast, siRNA against CCT-beta had no such effect. Adult fibroblasts were more inherently contractile than fetal fibroblasts by cellular traction force microscopy; this contractility was increased by treatment with EGF and PDGF. CCT-eta siRNA inhibited the PDGF-induction of adult fibroblast contractility, whereas CCT-beta siRNA had no such effect. In each of these instances, the effect of downregulating CCT-eta was to modulate the behavior of adult fibroblasts so as to more closely approximate the characteristics of fetal fibroblasts. We next examined the effect of CCT-eta modulation on alpha-smooth muscle actin (α-SMA) expression, a gene product well known to play a critical role in adult wound healing. Fetal fibroblasts were found to constitutively express less α-SMA than adult cells. Reduction of CCT-eta with siRNA had minimal effect on cellular beta-actin but markedly decreased α-SMA; in contrast, reduction of CCT-beta had minimal effect on either actin isoform. Direct inhibition of α-SMA with siRNA reduced both basal and growth factor-induced fibroblast motility. These results indicate that CCT-eta is a specific regulator of fibroblast motility and contractility and may be a key determinant of the scarless wound healing phenotype by means of its specific regulation of α-SMA expression

    Evaluation of the NK2 homeobox 1 gene (NKX2-1) as a hirschsprung's disease locus

    No full text
    Hirschsprung's disease (HSCR, colonic aganglionosis) is an oligogenic entity that usually requires mutations in RET and other interacting loci. Decreased levels of RET expression may lead to the manifestation of HSCR. We previously showed that RET transcription was decreased due to alteration of the NKX2-1 binding site by two HSCR-associated RET promoter single nucleotide polymorphisms (SNPs). This prompted us to investigate whether DNA alterations in NKX2-1 could play a role in HSCR by affecting the RET-regulatory properties of the NKX2-1 protein. Our initial study on 86 Chinese HSCR patients revealed a Gly322Ser amino acid substitution in the NKX2-1 protein. In this study, we have examined 102 additional Chinese and 70 Caucasian patients and 194 Chinese and 60 Caucasian unselected, unrelated, subjects as controls. The relevance of the DNA changes detected in NKX2-1 by direct sequencing were evaluated using bioinformatics, reporter and binding-assays, mouse neurosphere culture, immunohistochemistry and immunofluorescence techniques. Met3Leu and Pro48Pro were identified in 2 Caucasian and 1 Chinese patients respectively. In vitro analysis showed that Met3Leu reduced the activity of the RET promoter by 100% in the presence of the wild-type or HSCR-associated RET promoter SNP alleles. The apparent binding affinity of the NKX2-1 mutated protein was not decreased. The Met3Leu mutation may affect the interaction of NKX2-1 with its protein partners. The absence of NKX2-1 expression in mouse but not in human gut suggests that the role of NKX2-1 in gut development differs between the two species. NKX2-1 mutations could contribute to HSCR by affecting RET expression through defective interactions with other transcription factors. © 2007 The Authors Journal compilation © 2007 University College London.link_to_subscribed_fulltex
    corecore