499 research outputs found

    A novel non-heme iron-binding ferritin related to the DNA-binding proteins of Dps family in listeria innocua

    Get PDF

    Lactoferrin. A natural glycoprotein involved in iron and inflammatory homeostasis

    Get PDF
    Human lactoferrin (hLf), an iron-binding multifunctional cationic glycoprotein secreted by exocrine glands and by neutrophils, is a key element of host defenses. HLf and bovine Lf (bLf), possessing high sequence homology and identical functions, inhibit bacterial growth and biofilm dependently from iron binding ability while, independently, bacterial adhesion to and the entry into cells. In infected/inflamed host cells, bLf exerts an anti-inflammatory activity against interleukin-6 (IL-6), thus up-regulating ferroportin (Fpn) and transferrin receptor 1 (TfR1) and down-regulating ferritin (Ftn), pivotal actors of iron and inflammatory homeostasis (IIH). Consequently, bLf inhibits intracellular iron overload, an unsafe condition enhancing in vivo susceptibility to infections, as well as anemia of inflammation (AI), re-establishing IIH. In pregnant women, affected by AI, bLf oral administration decreases IL-6 and increases hematological parameters. This surprising effect is unrelated to iron supplementation by bLf (80 µg instead of 1-2 mg/day), but to its role on IIH. AI is unrelated to the lack of iron, but to iron delocalization: cellular/tissue overload and blood deficiency. BLf cures AI by restoring iron from cells to blood through Fpn up-expression. Indeed, anti-inflammatory activity of oral and intravaginal bLf prevents preterm delivery. Promising bLf treatments can prevent/cure transitory inflammation/anemia/oral pathologies in athletes

    Reciprocal Interactions between Lactoferrin and Bacterial Endotoxins and Their Role in the Regulation of the Immune Response

    Get PDF
    Lactoferrin (Lf), an iron-binding glycoprotein expressed in most biological fluids, represents a major component of the mammalian innate immune system. Lf’s multiple activities rely not only on its capacity to bind iron, but also to interact with molecular and cellular components of both host and pathogens. Lf can bind and sequester lipopolysaccharide (LPS), thus preventing pro-inflammatory pathway activation, sepsis and tissue damage. However, Lf-bound LPS may retain the capacity to induce cell activation via Toll-like receptor 4-dependent and -independent mechanisms. This review discusses the complex interplay between Lf and LPS and its relevance in the regulation of the immune response

    Efficacy of lactoferrin oral administration in the treatment of anemia and anemia of inflammation in pregnant and non-pregnant women: an interventional study

    Get PDF
    The discovery of the ferroportin-hepcidin complex has led to a critical review on the treatment of anemia and anemia of inflammation (AI). Ferroportin, the only known mammalian iron exporter from cells to blood, is negatively regulated by hepcidin, a hormone peptide able to bind to ferroportin, leading to its degradation. Therefore, new efficient therapeutic interventions acting on hepcidin and ferroportin are imperative to manage anemia and AI. Bovine milk derivative lactoferrin (bLf), a glycoprotein able to chelate two ferric ions per molecule, is emerging as a natural anti-inflammatory substance able to modulate hepcidin and ferroportin synthesis through the down-regulation of interleukin-6 (IL-6). Here, an interventional study (ClinicalTrials.gov Identifier: NCT01221844) was conducted by orally administering 100 mg of 20-30% iron-saturated bLf (corresponding to 70-84 μg of elemental iron) twice a day. This treatment was compared with the Italian standard therapy, consisting in the oral administration of 329.7 mg of ferrous sulfate once a day (corresponding to 105 mg of elemental iron). Treatments were carried out on 29 anemic women with minor ß-thalassemia (20 pregnant and 9 non-pregnant), 149 women with hereditary thrombophilia (HT) (70 pregnant and 79 non-pregnant) affected by AI and 20 anemic pregnant women suffering from various pathologies. In anemic pregnant and non-pregnant women with minor ß-thalassemia, presenting undetectable hepcidin levels, differently from ferrous sulfate management, bLf decreased IL-6 (from 25 ± 8 to 6 ± 3 pg/ml) and increased total serum iron (TSI) (from 54 ± 17 to 80 ± 9 μg/dl). BLf was also more efficient than ferrous sulfate in AI treatment in HT pregnant and non-pregnant women by decreasing both serum IL-6 (from 89 ± 8 to 58 ± 6 pg/ml) and hepcidin (from 115 ± 23 to 65 ± 10 ng/ml), thus increasing hematological parameters, such as the number of red blood cells (RBCs), the concentration of hemoglobin, TSI and serum ferritin. BLf was also efficient in treating anemia in other pathological pregnancies. Taken together all the results, bLf, showing a greater benefit and efficacy than the standard ferrous sulfate management, can be considered as a promising compound in treating anemia and AI through its ability to down-regulate IL-6, thus restoring ferroportin-mediated iron export from cells to blood in a hepcidin-dependent or independent way

    A novel gene encoding a sulfur-regulated outer membrane protein in Thiobacillus ferrooxidans

    Get PDF
    Thiobacillus ferrooxidans is a Gram-negative chemolithotrophic bacterium able to oxidize ferrous iron, elemental sulfur and inorganic sulfur compounds. The oxidation of sulfur by T. ferrooxidans resulted in an expression of some outer membrane proteins (OMPs) at a level higher than that observed during ferrous iron oxidation. Among these OMPs, a protein with a molecular mass of 54 kDa was purified and 18 amino acids of the N-terminal sequence determined. Using a 54 bp PCR generated DNA product as a probe for the protein, we isolated a 4.5 kb Pst I DNA chromosomal fragment containing the corresponding gene. Sequencing 2169 bp of this fragment revealed the open reading frame codifying for the protein, consisting of 467 amino acids and a molecular mass of 49 674 Da. The mature protein was produced by the removal of a 32 amino acid signal peptide-like sequence from the N-terminus of a 499 amino acid peptide. Although no significant homology with any known protein has been found and its physiological role remains unclear, its high expression on sulfur substrates suggests a role in sulfide mineral oxidation. (C) 1999 Elsevier Science B.V. All rights reserved

    Inhibitory activity of bovine lactoferrin against echovirus induced programmed cell death in vitro

    Get PDF
    Lactoferrin is a glycoprotein and plays an important role in defence against pathogens. Although the antiviral activity of lactoferrin is one of the major biological functions of such protein, the mechanism of action is still under debate. The effect of lactoferrin on echovirus 6 infection in vitro was analysed and results showed that (i) cells infected with echovirus 6, died as a result of apoptosis and that (ii) programmed cell death was inhibited by lactoferrin treatment. In this report, we demonstrate that lactoferrin can exert its anti-enteroviral activity by preventing viral-induced apoptosis. (C) 2005 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved

    Antibacterial activity of matrix-bound ovotransferrin

    Get PDF
    Ovotransferrin immobilized by covalent linkage to Sepharose 4B showed a bacteriostatic effect towards Escherichia coli similar to that of free ovotransferrin. The growth of the bacteria, after exposure to the gel-bound ovotransferrin and its removal, depended on the length of exposure. The results suggest that the antibacterial activity of transferrin is not due simply to the removal of iron from the medium

    Biotimer assay: A reliable and rapid method for the evaluation of central venous catheter microbial colonization

    Get PDF
    Adherent bacteria and biofilm frequently colonize central venous catheters (CVCs). CVC colonization is correlated to infections and particularly to bloodstream ones. The classical microbiological methods to determine of CVC colonization are not fully reliable and are time-consuming. BioTimer Assay (BTA) is a biological method already used to count bacteria adherent to abiotic surfaces and biofilm without sample manipulation. BTA employs specific reagents whose color changed according to bacterial metabolism. BTA is based on the principle that a metabolic reaction will be faster when more bacteria are present in the sample. Therefore, the time required for color changes of BTA reagents determines the number of bacteria present in the sample through a correlation line. Here, for the first time, we applied BTA and a specifically developed laboratory procedure to evaluate CVC colonization in comparison with the routine microbiological method (RMM). 125 CVCs removed from patients for suspected catheter-related bloodstream infection (CRBSI) or at hospital discharge were examined. BTA was reliable in assessing sterility and CVC colonization (100% agreement with RMM) and in recognizing the presence of fermenting or non-fermenting bacteria (97.1% agreement with RMM) shortening the analytical time by between 2- and 3-fold. Moreover, the reliability of BTA as early alert of CRBSI was evaluated. The sensitivity, specificity, positive, and negative predictive values for BTA as an early alert of CRBSI were 100, 40.0, 88.8 and 100%, respectively. In conclusion, BTA and the related laboratory procedure should be incorporated into routine microbiological methods since it can be considered a reliable tool to evaluate CVC colonization in a very short time and a rapid alert for CRBSIs

    Involvement of bovine lactoferrin metal saturation, sialic acid and protein fragments in the inhibition of rotavirus infection

    Get PDF
    Although the antiviral activity of lactoferrin is one of the major biological functions of this iron binding protein, the mechanism of action is still under debate. We have investigated the role of metal binding, of sialic acid and of tryptic fragments of bovine lactoferrin (bLf) in the activity towards rotavirus (intestinal pathogen naked virus) infecting enterocyte-like cells. The antiviral activity of bLf fully saturated with manganese or zinc was slightly decreased compared to that observed for apo- or iron-saturated bLf. The antiviral activity of differently metal-saturated bLf towards rotavirus was exerted during and after the virus attachment step. The removal of sialic acid enhanced the anti-rotavirus activity of bLf. Among all the peptidic fragments obtained by tryptic digestion of bLf and characterised by advanced mass spectrometric methodologies, a large fragment (86-258) and a small peptide (324-329: YLTTLK) were able to inhibit rotavirus even if at lower extent than undigested bLf. © 2001 Elsevier Science B.V. All rights reserved
    • …
    corecore