136 research outputs found

    Negative-Index Metamaterials: Second-Harmonic Generation, Manley-Rowe Relations and Parametric Amplification

    Full text link
    Second harmonic generation and optical parametric amplification in negative-index metamaterials (NIMs) are studied. The opposite directions of the wave vector and the Poynting vector in NIMs results in a "backward" phase-matching condition, causing significant changes in the Manley-Rowe relations and spatial distributions of the coupled field intensities. It is shown that absorption in NIMs can be compensated by backward optical parametric amplification. The possibility of distributed-feedback parametric oscillation with no cavity has been demonstrated. The feasibility of the generation of entangled pairs of left- and right-handed counter-propagating photons is discussed.Comment: 7 pages, 6 figure

    Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites

    Full text link
    We investigate the possibility of preparing left-handed materials in metallic magnetic granular composites. Based on the effective medium approximation, we show that by incorporating metallic magnetic nanoparticles into an appropriate insulating matrix and controlling the directions of magnetization of metallic magnetic components and their volume fraction, it may be possible to prepare a composite medium of low eddy current loss which is left-handed for electromagnetic waves propagating in some special direction and polarization in a frequency region near the ferromagnetic resonance frequency. This composite may be easier to make on an industrial scale. In addition, its physical properties may be easily tuned by rotating the magnetization locally.Comment: 5 figure

    Questions of perfect lenses by left handed materials

    Full text link
    We consider questions about the much discussed "perfect lenses" made by left handed materials. The transmission and reflection from a slab of left handed materials are investigated and the coefficients are obtained by the standard transfer matrix method. Possible limitations on such superlenses are explored. It is shown that the quality of the lenses can be significantly affected by the absorption that is necessarily present in the materials.Comment: 3 figure

    Refraction of Electromagnetic Energy for Wave Packets Incident on a Negative Index Medium is Always Negative

    Full text link
    We analyze refraction of electromagnetic wave packets on passing from an isotropic positive to an isotropic negative refractive index medium. We definitively show that in all cases the energy is always refracted negatively. For localized wave packets, the group refraction is also always negative.Comment: 5 pages, 3 figure

    Integral equation method for the electromagnetic wave propagation in stratified anisotropic dielectric-magnetic materials

    Full text link
    We investigate the propagation of electromagnetic waves in stratified anisotropic dielectric-magnetic materials using the integral equation method (IEM). Based on the superposition principle, we use Hertz vector formulations of radiated fields to study the interaction of wave with matter. We derive in a new way the dispersion relation, Snell's law and reflection/transmission coefficients by self-consistent analyses. Moreover, we find two new forms of the generalized extinction theorem. Applying the IEM, we investigate the wave propagation through a slab and disclose the underlying physics which are further verified by numerical simulations. The results lead to a unified framework of the IEM for the propagation of wave incident either from a medium or vacuum in stratified dielectric-magnetic materials.Comment: 14pages, 3figure

    Transmission Losses in Left-handed Materials

    Full text link
    We numerically analyze the origin of the transmission losses in left-handed structures. Our data confirms that left handed structures can have very good transmission properties, in spite of the expectable dispersion of their effective permeability and refraction index. The large permittivity of the metallic components improves the transmission. High losses, observed in recent experiments, could be explained by the absorption of the dielectric board

    Transmission Studies of Left-handed Materials

    Full text link
    Left-handed materials are studied numerically using an improved version of the transfer-matrix method. The transmission, reflection, the phase of the reflection and the absorption are calculated and compared with experiments for both single split-ring resonators (SRR) with negative permeability and left-handed materials (LHMs) which have both the permittivity and permeability negative. Our results suggest ways of positively identifying materials that have both permittivity and permeability negative, from materials that have either permeability or permittivity negative

    Amplification of evanescent waves in a lossy left-handed material slab

    Full text link
    We carry out finite-difference time-domain (FDTD) simulations, with a specially-designed boundary condition, on pure evanescent waves interacting with a lossy left-handed material (LHM) slab. Our results provide the first full-wave numerical evidence for the amplification of evanescent waves inside a LHM slab of finite absorption. The amplification is due to the interactions between the evanescent waves and the coupled surface polaritons at the two surfaces of the LHM slab and the physical process can be described by a simple model.Comment: 4 pages, 2 figure

    A review of size and geometrical factors influencing resonant frequencies in metamaterials

    Get PDF
    Although metamaterials and so-called left-handed media have originated from theoretical considerations, it is only by their practical fabrication and the measurement of their properties that they have gained credibility and can fulfil the potential of their predicted properties. In this review we consider some of the more generally applicable fabrication methods and changes in geometry as they have progressed, exhibiting resonant frequencies ranging from radio waves to the visible optical region

    Guided Modes in Negative Refractive Index Waveguides

    Get PDF
    We study linear guided waves propagating in a slab waveguide made of a negative-refraction- index material, the so-called left-handed waveguide. We reveal that the guided waves in left-handed waveguides possess a number of peculiar properties, such as the absence of the fundamental modes, mode double degeneracy, and sign-varying energy ux. In particular, we predict the existence of novel types of guided waves with a dipole-vortex structure of the Pointing vector.Comment: 4 pages, 4 figure
    corecore