101 research outputs found

    MAIN STAGES OF CONTINENTAL CRUST FORMATION IN THE WESTERN ALDAN SHIELD: CONSTRAINTS FROM SM-ND ISOTOPE SYSTEMATICS OF CENOZOIC SANDS IN THE CHARA AND TOKKA BASINS

    Get PDF
    Previous geochronological and Sm-Nd isotopegeochemical studies have identified the main stages of the Precambrian continental crust formation in the central and eastern parts of the Aldan Shield [Kotov et al., 2006], while its western part (Chara-Olekma Geoblock) has not been adequately investigated yet in this respect.Previous geochronological and Sm-Nd isotopegeochemical studies have identified the main stages of the Precambrian continental crust formation in the central and eastern parts of the Aldan Shield [Kotov et al., 2006], while its western part (Chara-Olekma Geoblock) has not been adequately investigated yet in this respect

    ДЕСЯТОЕ ЮБИЛЕЙНОЕ ВСЕРОССИЙСКОЕ НАУЧНОЕ СОВЕЩАНИЕ «ГЕОДИНАМИЧЕСКАЯ ЭВОЛЮЦИЯ ЛИТОСФЕРЫ ЦЕНТРАЛЬНО-АЗИАТСКОГО ПОДВИЖНОГО ПОЯСА: ОТ ОКЕАНА К КОНТИНЕНТУ» (ИЗК СО РАН, 17–20 ОКТЯБРЯ 2012 Г.)

    Get PDF
    The article provides review about the 10th anniversary of All-Russia scientific conference «Geodynamic evolution of the lithosphere of the Central Asian Orogenic Belt: from ocean to continent», which was held on 17–20 October, 2012 at the Institute of the Earth’s Crust SB RAS in Irkutsk, Russia.В статье приводится информация о десятом юбилейном Всероссийском научном совещании «Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса: от океана к континенту», которое проходило в Институте земной коры Сибирского отделения Российской академии наук (г. Иркутск) с 17 по 20 октября 2012 года

    METATERRIGENIOUS ROCKS OF THE OLKHON TERRANE OF THE CENTRAL ASIAN OROGENIC BELT: U-Pb ZIRCON AGE, GEOCHEMICAL CHARACTERISTICS, AND FORMATION MODELS OF SEDIMENTARY PROTOLITHS

    Get PDF
    The paper presents a petrographic, geochemical, and Sm-Nd isotopic data on the gneisses from different tectonic zones of the Olkhon terrane of the Central Asian Orogenic Belt, as well as the composition of garnets and the age of zircons in these metaterrigenous rocks. The garnet-biotite gneisses of the Anga-Sakhurta zone, as well as the garnet-bearing and garnet-free gneisses (granulites) of the Chernorud zone may result from metamorphism of immature terrigenous rocks of polymictic or greywacke compositions similar in geochemical characteristics to rocks of continental arcs. At the same time, the gneisses of these zones show both similarities and some differences in geochemical and isotopic characteristics, including variations in ɛNd(T) values from –0.2 to –9.0, which may indicate different proportions of one or another source in their protoliths. The age of most detrital zircons in the gneisses of the Chernorud and Anga-Sakhurta zones corresponds to 530–1000 Ma, and the youngest detrital zircons have an age of 522–537 Ma. The geochemical and geochronological data on the gneisses of the Chernorud and Anga-Sakhyurta zones suggests that the protoliths of these gneisses could be formed from the same sources of predominantly Neoproterozoic age. We assumed that gneiss protoliths could initially be sediments of the continental slope of Neoproterozoic composite terrane assembled to the Siberian Platform at 600‒610 Ma. The transport of clastic material being gneiss protoliths from this composite terrane, took place towards the Paleo-Asian Ocean. The youngest zircons with an age of about 530 Ma could be generated from igneous complexes intruding the Neoproterozoic composite superterrane. The garnet-biotite gneisses of the Krestovskaya zone are similar in chemical composition to immature graywacke sandstones, The ɛNd(T) value in these gneisses is –3.7. Detrital zircons in the gneisses of the Krestovskaya zone form age peaks at 780–820 and 498–515 Ma. Based on geochemical and geochronological data we assume that these gneisses could be formed in an intracontinental basin formed at the orogenic stage during accretionary-collisional events at the amalgamation the Orso block and the Birkhin island arc into the Krestovskaya zone.All terrigenous rocks being gneiss protoliths were metamorphosed at 460–510 Ma under granulite or amphibolite facies associated with accretionary and collisional events, which led to the formation of the Early Paleozoic Olkhon composite terrane

    К 80-ЛЕТНЕМУ ЮБИЛЕЮ ПРОФЕССОРА СЕМЕНА ИОЙНОВИЧА ШЕРМАНА

    Get PDF
    The article is devoted to the 80th birthday of Professor Semen I. Sherman, the founder of the Laboratory of Tectonophysics in IEC SB RAS, an expert in faulting, the state of stresses, geodynamic activity and seismicity of the lithosphere, and Deputy Chief Editor of Geodynamics & Tectonophysics.Статья посвящена 80-летию профессора Семена Иойновича Шермана – основателя лаборатории тектонофизики ИЗК СО РАН, крупного специалиста в области разломообразования, напряженного состояния и сейсмичности литосферы, заместителя главного редактора журнала «Геодинамика и тектонофизика».

    ВАЛЕНТИН СЕРГЕЕВИЧ ФЕДОРОВСКИЙ – КОРИФЕЙ CИБИРСКОЙ ГЕОЛОГИИ

    Get PDF
    The publication is devoted to the 80 anniversary of Valentin S. Fedorovsky, the coryphaeus of Siberian geology.Cтатья посвящена 80-летнему юбилею Валентина Сергеевича Федоровского, корифея Сибирской геологии

    Palaeoproterozoic to Eoarchaean crustal growth in southern Siberia: a Nd-isotope synthesis

    Get PDF
    Nd-isotope analyses from 114 rock samples are reported from the southern part of the Siberian craton to establish a first-order crustal formation scheme for the region. The Nd-isotopedata show considerable variability within and among different cratonic units. In many cases this variability reflects differing degrees of mixing between juvenile and older (up to Eoarchaean) crustal components. The fragments of Palaeoproterozoic juvenile crust within the studied segment of the Siberian craton margin have Nd-model ages of 2.0-2.3 Ga. Voluminous Palaeoproterozoicgranites ( 1.85 Ga) were intruded into cratonic fragments and suture zones. These granites mark the stabilization of the southern Siberian craton. The complexity in the Nd data indicatea long history of crustal development, extending from the Eoarchaean to the Palaeoproterozoiceras, which is interpreted to reflect the amalgamation of distinct Archaean crustal fragments, with differing histories, during Palaeoproterozoic accretion at 1.9-2.0 Ga and subsequent cratonic stabilization at 1.85 Ga. Such a model temporally coincides with important orogenic events on nearly every continent and suggests that the Siberian craton participated in the formation of a Palaeoproterozoic supercontinent at around 1.9 Ga

    КОМПЛЕКСЫ МЕТАМОРФИЧЕСКИХ ЯДЕР ЗАБАЙКАЛЬЯ: ОБЗОР

    Get PDF
    Metamorphic core complexes (hereafter MCC) revealed in the Transbaikalia have similar features of their patterns. Three levels can be distinguished by structural­material indicators: core, zone of mylonites (dynamically metamorphosed rocks) and overlying formations. The cores are composed of the Paleozoic granites and granitogneisses. Zones of mylonites skirt the cores and are characterized by various tectonites which are formed at the expense of the core rocks. The overlying formations include volcanogenic­sedimentary series of the Mesozoic and the Upper Palaeozoic. The rocks are not metamorphosed, yet subject to brittle deformations. Structurally, they are detached and deposited above the zone of mylonites.In Transbaikalia, MCC are characterized by synmetamorphic structural paragenesises of one type: low­angle schistosity, micro­ and macro­structures (folds, mineral streaking, boudinage, pressure shadows, C–S structure, kick­bends). According to the kinematic analyses, they were formed by the simple shear mechanism along the zones of deeply penetrating regional dislocations which plunged in the south­eastward direction. Tectonic transportation of the materials developed in the same direction, i.e. the top parts of tectono­stratigraphic sections were displaced against the lower parts in the south­eastward direction. Extension deformations tended in the north­west – south­east direction. Such movements facilitated formation of synthetic listric normal faults and rift basins. The most intensive tectonic exposure period is determined as 112–123 mln years, while the period of metamorphism is assessed as 140–130 mln years. The rocks in depth of the deep dislocation were transformed in conditions of amphibole facies of metamorphism (Т=590–640 °С; Р=3.2–4.6 kbar).According to our structural-­geological, petrological and isotopic data, the age of the majority of the metamorphic formations of the Transbaikalia is determined as the Late Mesozoic. They were formed in the extension regime due collapse of the Late Mesozoic orogeny, that was caused by accretion­collision events during the Early Mesozoic. Thickening of the continental crust contributed to increase of heat flow and higher plasticity at the crustal bottom. The orogen was thus unstable and flowing and caused regional extension and dislocations at the middle­crust level. Thinning of the crust was accompanied by isostatic uplifting which facilitated emergence of the structural metamorphic complexes of the middle­crust levels on the surface and formation of the metamorphic core complexes.Установленные в Забайкалье комплексы метаморфических ядер (metamorphic core complexes – МСС) характеризуются близкими чертами строения. По структурно-вещественным признакам в них выделяются три структурных уровня: ядро, зона милонитов (динамометаморфизованных пород) и образования покрова. Ядра сложены палеозойскими гранитами и гранитогнейсами. Милониты окаймляют ядра и характеризуются разнообразными тектонитами, возникшими за счет пород ядра. К покровным образованиям относятся вулканогенно-осадочные серии мезозоя и верхнего палеозоя. Породы не метаморфизованы, но подвержены хрупким деформациям. Располагаются они структурно выше зоны милонитов, отделяясь от них детачментом.Для МСС Забайкалья характерны однотипные синметаморфические структурные парагенезисы: пологая сланцеватость, микро- и макроструктуры (складки, линейность, будинаж, тени давления, C–S-структуры, кинкбанды). Кинематический анализ указывает, что их становление происходило по механизму простого сдвига по зонам глубокопроникающих региональных срывов, погружавшихся в юго-восточном направлении. В этом же направлении осуществлялся тектонический транспорт вещества, т.е. верхние части тектоностратиграфических разрезов относительно нижних смещались на юго-восток. Деформация растяжения характеризовалась трендом северо-запад – юго-восток. Такие движения способствовали возникновению синтетических листрических сбросов и формированию  рифтовых впадин. Время наиболее интенсивного тектонического экспонирования определяется значениями 112 – 123 млн лет, а время проявления метаморфизма – 140–130 млн лет. Породы в зоне глубинного срыва были преобразованы в условиях амфиболитовой фации метаморфизма (Т=590–640 °С и Р=3.2–4.6 кбар).Структурно-геологические, петрологические и изотопные данные показывают, что значительная часть метаморфических образований Забайкалья имеет позднемезозойский возраст. Их формирование происходило в режиме растяжения и связано с коллапсом позднемезозойского орогена, который возник в процессе раннемезозойских аккреционно-коллизионных событий. Утолщение континентальной коры способствовало усилению теплового потока и повышению пластичности в низах коры. Это предопределило неустойчивость орогена и его растекание, что привело к возникновению регионального растяжения и срывов на среднекоровом уровне. Утонение коры сопровождалось изостатическим поднятием, что способствовало выводу на поверхность структурновещественных комплексов среднекоровых уровней и формированию комплексов метаморфических ядер

    МЕТАТЕРРИГЕННЫЕ ПОРОДЫ ОЛЬХОНСКОГО ТЕРРЕЙНА ЦЕНТРАЛЬНО-АЗИАТСКОГО СКЛАДЧАТОГО ПОЯСА: U-Pb ВОЗРАСТ ЦИРКОНОВ, ГЕОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА И МОДЕЛИ ФОРМИРОВАНИЯ ОСАДОЧНЫХ ПРОТОЛИТОВ

    Get PDF
    The paper presents a petrographic, geochemical, and Sm-Nd isotopic data on the gneisses from different tectonic zones of the Olkhon terrane of the Central Asian Orogenic Belt, as well as the composition of garnets and the age of zircons in these metaterrigenous rocks. The garnet-biotite gneisses of the Anga-Sakhurta zone, as well as the garnet-bearing and garnet-free gneisses (granulites) of the Chernorud zone may result from metamorphism of immature terrigenous rocks of polymictic or greywacke compositions similar in geochemical characteristics to rocks of continental arcs. At the same time, the gneisses of these zones show both similarities and some differences in geochemical and isotopic characteristics, including variations in ɛNd(T) values from –0.2 to –9.0, which may indicate different proportions of one or another source in their protoliths. The age of most detrital zircons in the gneisses of the Chernorud and Anga-Sakhurta zones corresponds to 530–1000 Ma, and the youngest detrital zircons have an age of 522–537 Ma. The geochemical and geochronological data on the gneisses of the Chernorud and Anga-Sakhyurta zones suggests that the protoliths of these gneisses could be formed from the same sources of predominantly Neoproterozoic age. We assumed that gneiss protoliths could initially be sediments of the continental slope of Neoproterozoic composite terrane assembled to the Siberian Platform at 600‒610 Ma. The transport of clastic material being gneiss protoliths from this composite terrane, took place towards the Paleo-Asian Ocean. The youngest zircons with an age of about 530 Ma could be generated from igneous complexes intruding the Neoproterozoic composite superterrane. The garnet-biotite gneisses of the Krestovskaya zone are similar in chemical composition to immature graywacke sandstones, The ɛNd(T) value in these gneisses is –3.7. Detrital zircons in the gneisses of the Krestovskaya zone form age peaks at 780–820 and 498–515 Ma. Based on geochemical and geochronological data we assume that these gneisses could be formed in an intracontinental basin formed at the orogenic stage during accretionary-collisional events at the amalgamation the Orso block and the Birkhin island arc into the Krestovskaya zone.All terrigenous rocks being gneiss protoliths were metamorphosed at 460–510 Ma under granulite or amphibolite facies associated with accretionary and collisional events, which led to the formation of the Early Paleozoic Olkhon composite terrane.Проведено петрографическое, геохимическое и Sm-Nd изотопно-геохимическое изучение гнейсов из разных тектонических зон Ольхонского террейна Центрально-Азиатского складчатого пояса, а также анализ составов гранатов и возраста цирконов в этих метатерригенных породах. Установлено, что гранат-биотитовые гнейсы зоны Анга-Сахюрты, так же как гранатсодержащие и безгранатовые гнейсы (гранулиты) Чернорудской зоны, в неметаморфизованном состоянии представляли собой незрелые терригенные породы полимиктового или грауваккового состава, близкие по геохимическим характеристикам породам континентальных дуг. В то же время проанализированные гнейсы этих зон обнаруживают как сходства, так и некоторые отличия геохимических и изотопных характеристик, в том числе вариации значений ɛNd(T) от –0.2 до –9.0, что может свидетельствовать о различных пропорциях того или иного источника в их субстрате. Возраст большинства зерен детритовых цирконов в гнейсах Чернорудской зоны и зоны Анга-Сахюрты соответствует временному интервалу 530–1000 млн лет, а самые молодые зерна детритового циркона имеют возраст в диапазоне 522–537 млн лет. Совокупность геохимических и геохронологических данных по гнейсам Чернорудской зоны и зоны Анга-Сахюрты дает основание считать, что протолиты этих гнейсов могли быть образованы в результате разрушения одних и тех же источников преимущественно неопротерозойского возраста. Предполагается, что субстраты гнейсов первоначально могли являться осадками континентального склона композитного неопротерозойского сооружения, присоединенного к Сибирской платформе на рубеже 600‒610 млн лет. Снос обломочного материала с этого композитного супертеррейна, обеспечившего накопление терригенного субстрата изученных гнейсов, осуществлялся в сторону Палеоазиатского океана. Самые молодые цирконы с возрастом около 530 млн лет могли поступать в бассейн седиментации из магматических комплексов, прорывающих неопротерозойское композитное сооружение. Гранат-биотитовые гнейсы Крестовской зоны по химическому составу близки незрелым граувакковым песчаникам. Значение ɛNd(T) в этих гнейсах составляет –3.7. Детритовые цирконы в гнейсах Крестовской зоны образуют возрастные пики на отметках 780‒820 и 498‒515 млн лет. Комбинация геохимических и геохронологических данных позволила сделать вывод, что субстраты этих гнейсов могли быть образованы во внутриконтинентальном бассейне, сформированном на орогенном этапе в ходе аккреционно-коллизионных событий при сочленении блока Орсо и Бирхинской островодужной системы в единую Крестовскую зону.В процессе формирования раннепалеозойского Ольхонского террейна все терригенные породы, являющиеся протолитами гнейсов, на временном интервале 460–510 млн лет в условиях гранулитовой или амфиболитовой фации испытали метаморфизм, связанный с аккреционными и коллизионными событиями, которые и привели к возникновению единого композитного Ольхонского террейна

    Эволюция напряженного состояния земной коры района кимберлитовой трубки Катока, северо-восток Анголы

    Get PDF
    This paper presents the first results of the geostructural and tectonophysical studies of the crustal stress state in the Catoca kimberlite pipe area at the southwestern flank of the Kasai Shield in the northeasternAngola. In the evolution of the crustal stress state, six main stages are distinguished by analyzing the displacements of markers, fold hinges, long axes of boudins, granite dikes of various intrusion phases and kimberlites, as well as fractures with striations. For each of these stages, a dominating horizontal tectonic stress and its orientation is identified. During stage 1 (NW extension and shearing) and at the beginning of stage 2 (NW compression), structures formed in the host rocks in brittle-plastic conditions. The replacement of plastic deformation by faulting could occur about 530–510 Ma ago, when the continental crust ofAfricahad completely formed. Stage 3 (radial, mainly NW extension) and stage 4 (shearing, NW extension, and NE compression) were the most important for kimberlite occurrence: in the Early Cretaceous, radial extension was replaced by shearing. Both stages are related to opening of the central segment of theSouth Atlantic. The main kimberlite magmas occurred during the break-up of the Angola-Brazilian segment of Gondwana. In the course of all the four stages, stress was mainly released by the NE- and E-NE-striking faults and, to a lesser extent, by the NW-striking and latitudinal faults. The initial stage of kimberlite magmatism is associated with the NE- and E-NE-striking faults due to the presence of the Precambrian zones of flow and schistosity, which facilitated the NW-trending subhorizontal extension. Stage 5 (NE compression) began in the second half of the Cretaceous and possibly lasted until the end of the Paleogene, and compression occurred mainly along the NW-striking faults. Regionally, it corresponds to two stages of inversion movements in the southern regions of Africa, during which theAngoladome-shaped uplift emerged and the shoulders of the East African rifts began to take shape. Stage 6 (horizontal extension, mainly in the N-NE direction) is related to the processes that took place in the southern segment of theTanganyikarift and the eastern coast of theAtlantic. Based on the results of our studies, it became for the first time possible to get an idea of the main stages in the evolution of the studied region. Further geostructural measurements and dating of the host rocks will provide for a more precise definition of the proposed stages.В статье представлены первые результаты геолого-структурного и тектонофизического изучения напряженного состояния земной коры района алмазоносной трубки Катока, расположенной на юго-западном фланге щита Касаи на северо-востоке Анголы. На основе анализа смещений маркеров, шарниров складок и длинных осей будин, даек гранитов различных фаз внедрения и кимберлитов, а также трещин со штрихами скольжения выделено шесть основных этапов в эволюции напряженного состояния земной коры. Эти этапы обусловлены доминированием ориентированных в определенном направлении горизонтальных тектонических напряжений сжатия и/или растяжения, господствовавших в течение всей истории тектонического развития региона. В ходе первого этапа – превалирующего северо-западного растяжения со сдвигом – и начала второго этапа – северо-западного сжатия – формирование структур во вмещающих породах происходило в хрупкопластических условиях. Смена пластических деформаций на разрывные могла произойти примерно 530–510 млн лет назад, когда континентальная кора Африки была окончательно сформирована. Третий и четвертый этапы, важнейшие для кимберлитообразования, в течение которых в раннем мелу радиальное растяжение сменилось сдвиговым полем напряжений, характеризуются превалированием северо-западного растяжения. Оба этапа связаны с открытием центрального сегмента Южной Атлантики, а основной кимберлитовый магматизм приходится на момент разрыва Анголо-Бразильского сегмента Гондваны. В ходе всех четырех этапов разрядка напряжений происходила в основном по разрывным нарушениям северо-восточного и восток-северо-восточного простирания, в меньшей степени северо-западного и широтного. Начальный этап кимберлитового магматизма связан с разрывами двух первых указанных направлений, что предопределено наличием древних докембрийских зон течения и рассланцевания, которые оказались наиболее благоприятными для реализации северо-западного субгоризонтального растяжения. Последующее северо-восточное сжатие (пятый этап), начавшееся во второй половине мела и, возможно, продлившееся до конца палеогена, реализовалось в основном по разрывам северо-западного простирания. В региональном отношении ему соответствуют два этапа инверсионных движений на юге Африке, в ходе которых возникло Ангольское куполовидное поднятие и началось формирование плеч Восточно-Африканских рифтов. Последний этап горизонтального растяжения в доминирующем север-северо-восточном направлении связан с процессами, происходящими на юге Танганьикского рифта и восточном побережье Атлантики. Результаты исследований впервые позволили получить представление об основных этапах развития региона, которые впоследствии будут уточняться на основании большего количества геолого-структурных измерений и данных датирования вмещающих пород

    Коллизионная система Западного Прибайкалья: аэрокосмическая геологическая карта Ольхонского региона (Байкал, Россия)

    Get PDF
    We announce the second edition of the Aerospace geological map of the Olkhon Region (Baikal, Russia), scale 1:40 000, which was published in 2017. The map has been considerably revised and updated, and its changes are critical for correct understanding of the regional geology, tectonics and geodynamics. Only a small number of its printed copies have been released, and therefore the map may not be available for all interested specialists. The electronic version of the map is available for studying and/or printing (see the link to its pdf file in the paper’s supplement). The pdf file is about 68 MB, i.e. small compared to the original map (more than 5 GB), but the quality is maintained. The map does not show the base layer due to the terms of the licenses owned by the companies and satellite owners.Настоящее краткое сообщение является в значительной степени анонсом второго издания Аэрокосмической геологической карты Ольхонского региона (Байкал, Россия) м-ба 1:40000, изданной в 2017 г. Изменения по сравнению с первым изданием карты весьма значительны и принципиально важны для понимания геологии, тектоники и геодинамики региона. Карта отпечатана небольшим тиражом, поэтому вряд ли будет доступна всем заинтересованным специалистам. В статье же приводится ссылка на электронный вариант карты (pdf-файл), размещенный в дополнительных материалах к статье на сайте журнала, который можно изучать или распечатывать для пользования. Размер электронного варианта файла карты (около 68 Мб) невелик по сравнению с оригиналом (более 5 Гб), однако потери качества нет, из него только удален базовый слой по условиям лицензий, полученных от компаний и владельцев спутников
    corecore