2,878 research outputs found
Quantum Circuits for Incompletely Specified Two-Qubit Operators
While the question ``how many CNOT gates are needed to simulate an arbitrary
two-qubit operator'' has been conclusively answered -- three are necessary and
sufficient -- previous work on this topic assumes that one wants to simulate a
given unitary operator up to global phase. However, in many practical cases
additional degrees of freedom are allowed. For example, if the computation is
to be followed by a given projective measurement, many dissimilar operators
achieve the same output distributions on all input states. Alternatively, if it
is known that the input state is |0>, the action of the given operator on all
orthogonal states is immaterial. In such cases, we say that the unitary
operator is incompletely specified; in this work, we take up the practical
challenge of satisfying a given specification with the smallest possible
circuit. In particular, we identify cases in which such operators can be
implemented using fewer quantum gates than are required for generic completely
specified operators.Comment: 15 page
Casimir energy of finite width mirrors: renormalization, self-interaction limit and Lifshitz formula
We study the field theoretical model of a scalar field in presence of spacial
inhomogeneities in form of one and two finite width mirrors (material slabs).
The interaction of the scalar field with the defect is described with
position-dependent mass term. Within this model we derive the interaction of
two finite width mirrors, establish the correspondence of the model to the
Lifshitz formula and construct limiting procedure to obtain finite self-energy
of a single mirror without any normalization condition.Comment: 5 pages, based on the presentation on the Ninth Conference on Quantum
Field Theory under the influence of External Conditions, Oklahoma, 200
- …