7 research outputs found

    Field theory for size- and charge asymmetric primitive model of electrolytes. Mean-field stability analysis and pretransitional effects

    Full text link
    The primitive model of ionic systems is investigated within a field-theoretic description for the whole range of size-, \lambda, and charge, Z, ratios of the two ionic species. Two order parameters (OP) are identified, and their relations to physically relevant quantities are described for various values of \lambda and Z. Instabilities of the disordered phase associated with the two OP's are determined in the mean-field approximation. A gas-liquid separation occurs for any Z and \lambda different from 1. In addition, an instability with respect to various types of periodic ordering of the two kinds of ions is found

    Field-theoretic description of ionic crystallization in the restricted primitive model

    Full text link
    Effects of charge-density fluctuations on a phase behavior of the restricted primitive model (RPM) are studied within a field-theoretic formalism. We focus on a λ\lambda-line of continuous transitions between charge-ordered and charge-disordered phases that is observed in several mean-field (MF) theories, but is absent in simulation results. In our study the RPM is reduced to a ϕ6\phi^6 theory, and a fluctuation contribution to a grand thermodynamic potential is obtained by generalizing the Brazovskii approach. We find that in a presence of fluctuations the λ\lambda-line disappears. Instead, a fluctuation-induced first-order transition to a charge-ordered phase appears in the same region of a phase diagram, where the liquid -- ionic-crystal transition is obtained in simulations. Our results indicate that the charge-ordered phase should be identified with an ionic crystal.Comment: 31 pages, 10 figure

    Strong-Segregation Theory of Bicontinuous Phases in Block Copolymers

    Full text link
    We compute phase diagrams for AnBmA_nB_m starblock copolymers in the strong-segregation regime as a function of volume fraction ϕ\phi, including bicontinuous phases related to minimal surfaces (G, D, and P surfaces) as candidate structures. We present the details of a general method to compute free energies in the strong segregation limit, and demonstrate that the gyroid G phase is the most nearly stable among the bicontinuous phases considered. We explore some effects of conformational asymmetry on the topology of the phase diagram.Comment: 14 pages, latex, 21 figures, to appear in Macromolecule
    corecore