1,040 research outputs found

    Generating Finite Dimensional Integrable Nonlinear Dynamical Systems

    Full text link
    In this article, we present a brief overview of some of the recent progress made in identifying and generating finite dimensional integrable nonlinear dynamical systems, exhibiting interesting oscillatory and other solution properties, including quantum aspects. Particularly we concentrate on Lienard type nonlinear oscillators and their generalizations and coupled versions. Specific systems include Mathews-Lakshmanan oscillators, modified Emden equations, isochronous oscillators and generalizations. Nonstandard Lagrangian and Hamiltonian formulations of some of these systems are also briefly touched upon. Nonlocal transformations and linearization aspects are also discussed.Comment: To appear in Eur. Phys. J - ST 222, 665 (2013

    On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator

    Get PDF
    Using the modified Prelle- Singer approach, we point out that explicit time independent first integrals can be identified for the damped linear harmonic oscillator in different parameter regimes. Using these constants of motion, an appropriate Lagrangian and Hamiltonian formalism is developed and the resultant canonical equations are shown to lead to the standard dynamical description. Suitable canonical transformations to standard Hamiltonian forms are also obtained. It is also shown that a possible quantum mechanical description can be developed either in the coordinate or momentum representations using the Hamiltonian forms.Comment: 19 page

    Extended Prelle-Singer Method and Integrability/Solvability of a Class of Nonlinear nnth Order Ordinary Differential Equations

    Full text link
    We discuss a method of solving nthn^{th} order scalar ordinary differential equations by extending the ideas based on the Prelle-Singer (PS) procedure for second order ordinary differential equations. We also introduce a novel way of generating additional integrals of motion from a single integral. We illustrate the theory for both second and third order equations with suitable examples. Further, we extend the method to two coupled second order equations and apply the theory to two-dimensional Kepler problem and deduce the constants of motion including Runge-Lenz integral.Comment: 18 pages, Article dedicated to Professor F. Calogero on his 70thbirthda

    Enhanced synchronization in an array of spin torque nano oscillators in the presence of oscillating external magnetic field

    Full text link
    We demonstrate that the synchronization of an array of electrically coupled spin torque nano-oscillators (STNO) modelled by Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation can be enhanced appreciably in the presence of a common external microwave magnetic field. The applied microwave magnetic field stabilizes and enhances the regions of synchronization in the parameter space of our analysis, where the oscillators are exhibiting synchronized oscillations thereby emitting improved microwave power. To characterize the synchronized oscillations we have calculated the locking range in the domain of external source frequency.Comment: Accepted for publication in Europhysics Letters (EPL
    • …
    corecore