1,380 research outputs found

    Parity violating vertices for spin-3 gauge fields

    Full text link
    The problem of constructing consistent parity-violating interactions for spin-3 gauge fields is considered in Minkowski space. Under the assumptions of locality, Poincar\'e invariance and parity non-invariance, we classify all the nontrivial perturbative deformations of the abelian gauge algebra. In space-time dimensions n=3n=3 and n=5n=5, deformations of the free theory are obtained which make the gauge algebra non-abelian and give rise to nontrivial cubic vertices in the Lagrangian, at first order in the deformation parameter gg. At second order in gg, consistency conditions are obtained which the five-dimensional vertex obeys, but which rule out the n=3n=3 candidate. Moreover, in the five-dimensional first order deformation case, the gauge transformations are modified by a new term which involves the second de Wit--Freedman connection in a simple and suggestive way.Comment: 27 pages, 1 table, revtex4, typos correcte

    Parametric statistics of zeros of Husimi representations of quantum chaotic eigenstates and random polynomials

    Full text link
    Local parametric statistics of zeros of Husimi representations of quantum eigenstates are introduced. It is conjectured that for a classically fully chaotic systems one should use the model of parametric statistics of complex roots of Gaussian random polynomials which is exactly solvable as demonstrated below. For example, the velocities (derivatives of zeros of Husimi function with respect to an external parameter) are predicted to obey a universal (non-Maxwellian) distribution dP(v)/dv2=2/(πσ2)(1+v2/σ2)3,{d P(v)}/{dv^2} = 2/(\pi\sigma^2)(1 + |v|^2/\sigma^2)^{-3}, where σ2\sigma^2 is the mean square velocity. The conjecture is demonstrated numerically in a generic chaotic system with two degrees of freedom. Dynamical formulation of the ``zero-flow'' in terms of an integrable many-body dynamical system is given as well.Comment: 13 pages in plain Latex (1 figure available upon request

    g = 2 as a Gauge Condition

    Get PDF
    Charged matter spin-1 fields enjoy a nonelectromagnetic gauge symmetry when interacting with vacuum electromagnetism, provided their gyromagnetic ratio is 2.Comment: 5 pages, REVTeX, submitted to Phys Rev D Brief Report

    Charged coherent states related to su_{q}(2) covariance

    Full text link
    A new kind of q-deformed charged coherent states is constructed in Fock space of two-mode q-boson system with su_{q}(2) covariance and a resolution of unity for these states is derived. We also present a simple way to obtain these coherent states using state projection method.Comment: 7 pages. To appear in Modern Phyics Letter:

    Multi-Dimensional Hermite Polynomials in Quantum Optics

    Full text link
    We study a class of optical circuits with vacuum input states consisting of Gaussian sources without coherent displacements such as down-converters and squeezers, together with detectors and passive interferometry (beam-splitters, polarisation rotations, phase-shifters etc.). We show that the outgoing state leaving the optical circuit can be expressed in terms of so-called multi-dimensional Hermite polynomials and give their recursion and orthogonality relations. We show how quantum teleportation of photon polarisation can be modelled using this description.Comment: 10 pages, submitted to J. Phys. A, removed spurious fil

    Parity-dependent squeezing of light

    Get PDF
    A parity-dependent squeezing operator is introduced which imposes different SU(1,1) rotations on the even and odd subspaces of the harmonic oscillator Hilbert space. This operator is used to define parity-dependent squeezed states which exhibit highly nonclassical properties such as strong antibunching, quadrature squeezing, strong oscillations in the photon-number distribution, etc. In contrast to the usual squeezed states whose QQ and Wigner functions are simply Gaussians, the parity-dependent squeezed states have much more complicated QQ and Wigner functions that exhibit an interesting interference in phase space. The generation of these states by parity-dependent quadratic Hamiltonians is also discussed.Comment: accepted for publication in J. Phys. A, LaTeX, 11 pages, 12 figures (compressed PostScript, available at http://www.technion.ac.il/~brif/graphics/pdss_graph ). More information on http://www.technion.ac.il/~brif/science.htm

    Bargmann-Michel-Telegdi equation and one-particle relativistic approach

    Full text link
    A reexamination of the semiclassical approach of the relativistic electron indicates a possible variation of its helicity for electric and magnetic static fields applied along its global motion due to zitterbewegung effects, proportional to the anomalous part of the magnetic moment.Comment: 10 pages, LATEX2E, uses amsb

    Improvement of measurement accuracy in SU(1,1) interferometers

    Get PDF
    We consider an SU(1,1) interferometer employing four-wave mixers that is fed with two-mode states which are both coherent and intelligent states of the SU(1,1) Lie group. It is shown that the phase sensitivity of the interferometer can be essentially improved by using input states with a large photon-number difference between the modes.Comment: LaTeX, 5 pages, 1 figure (compressed PostScript, available at http://www.technion.ac.il/~brif/graphics/interfer_graph/qopt.ps.gz ). More information on http://www.technion.ac.il/~brif/science.htm
    corecore