617 research outputs found

    Four-gap glass RPC as a candidate to a large area thin time-of-flight detector

    Get PDF
    A four-gap glass RPC with 0.3mm gap size was tested with hadron beam as a time-of-flight detector having a time resolution of ~ 100ps. A thickness of the detector together with front-end electronics is ~ 12mm. Results on time resolution dependently on a pad size are presented. This paper contains first result on the timing RPC (with ~ 100ps resolution) having a strip read-out. Study has been done within the HARP experiment (CERN-PS214) R&D work. A obtaned data can be useful if a design of a large area thin timing detector has to be done.Comment: 18 pages, 13 figure

    Testrun results from prototype fiber detectors for high rate particle tracking

    Full text link
    A fiber detector concept has been realized allowing to registrate particles within less than 100 nsec with a space point precision of about 0.1 mm at low occupancy. Three full size prototypes have been build by different producers and tested at a 3 GeV electron beam at DESY. After 3 m of light guides 8-10 photoelectrons were registrated by multichannel photomultipliers providing an efficiency of more than 99%. Using all available data a resolution of 0.086 mm was measured.Comment: 18 pages, 17 figure

    Revisiting the 'LSND anomaly' II: critique of the data analysis

    Full text link
    This paper, together with a preceding paper, questions the so-called 'LSND anomaly': a 3.8 sigma excess of antielectronneutrino interactions over standard backgrounds, observed by the LSND Collaboration in a beam dump experiment with 800 MeV protons. That excess has been interpreted as evidence for the antimuonneutrino to antielectronneutrino oscillation in the \Deltam2 range from 0.2 eV2 to 2 eV2. Such a \Deltam2 range is incompatible with the widely accepted model of oscillations between three light neutrino species and would require the existence of at least one light 'sterile' neutrino. In a preceding paper, it was concluded that the estimates of standard backgrounds must be significantly increased. In this paper, the LSND Collaboration's estimate of the number of antielectronneutrino interactions followed by neutron capture, and of its error, is questioned. The overall conclusion is that the significance of the 'LSND anomaly' is not larger than 2.3 sigma.Comment: 30 pages, 16 figures, 6 table

    Cross-sections of large-angle hadron production in proton- and pion-nucleus interactions VII: tin nuclei and beam momenta from \pm3 GeV/c to \pm15 GeV/c

    Get PDF
    We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% nuclear interaction length thick stationary tin target, of proton and pion beams with momentum from \pm3 GeV/c to \pm15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. Cross-sections on tin nuclei are compared with cross-sections on beryllium, carbon, copper, tantalum and lead nuclei.Comment: 68 pages, 13 figure

    Tests of a fiber detector concept for high rate particle tracking

    Get PDF
    A fiber detector concept is suggested allowing to registrate particles within less than 100 nsec with a space point precision of about 0.1 mm at low occuppancy. The fibers should be radiation hard for 1 Mrad/year. Corresponding prototypes have been build and tested at a 3 GeV electron beam at DESY. Preliminary results of these tests indicate that the design goal for the detector is reached.Comment: 8 pages, 10 figures. Contributed to Workshop on Scintillating Fiber Detectors (SCIFI97), Notre Dame, IN, 2-6 Nov 199
    corecore