2,516 research outputs found
Relativistic Charge Form Factor of the Deuteron
Relativistic integral representation in terms of experimental neutron-proton
scattering phase shifts alone is used to compute the charge form factor of the
deuteron . The results of numerical calculations of
are presented in the interval of the four-momentum transfers
squared . Zero and the prominent secondary maximum
in are the direct consequences of the change of sign in the
experimental - phase shifts. Till the point the
total relativistic correction to is positive and reaches the
maximal value of 25% at .Comment: 9 pages, LaTeX, 2 postscript figures, uses wor-sci.sty, epsf.st
Magnetic Radius of the Deuteron
The root-mean square radius of the deuteron magnetic moment distribution, , is calculated for several realistic models of the --interaction.
For the Paris potential the result is fm. The
dependence of on the choice of model, relativistic effects and
meson exchange currents is investigated. The experimental value of is
also considered. The necessity of new precise measurements of the deuteron
magnetic form factor at low values of is stressed.Comment: 4 pages, RevTe
The exact Darwin Lagrangian
Darwin (1920) noted that when radiation can be neglected it should be
possible to eliminate the radiation degrees-of-freedom from the action of
classical electrodynamics and keep the discrete particle degrees-of-freedom
only. Darwin derived his well known Lagrangian by series expansion in
keeping terms up to order . Since radiation is due to acceleration the
assumption of low speed should not be necessary. A Lagrangian is suggested that
neglects radiation without assuming low speed. It cures deficiencies of the
Darwin Lagrangian in the ultra-relativistic regime.Comment: 2.5 pages, no figure
Navier-Stokes hydrodynamics of thermal collapse in a freely cooling granular gas
We employ Navier-Stokes granular hydrodynamics to investigate the long-time
behavior of clustering instability in a freely cooling dilute granular gas in
two dimensions. We find that, in circular containers, the homogeneous cooling
state (HCS) of the gas loses its stability via a sub-critical pitchfork
bifurcation. There are no time-independent solutions for the gas density in the
supercritical region, and we present analytical and numerical evidence that the
gas develops thermal collapse unarrested by heat diffusion. To get more
insight, we switch to a simpler geometry of a narrow-sector-shaped container.
Here the HCS loses its stability via a transcritical bifurcation. For some
initial conditions a time-independent inhomogeneous density profile sets in,
qualitatively similar to that previously found in a narrow-channel geometry.
For other initial conditions, however, the dilute gas develops thermal collapse
unarrested by heat diffusion. We determine the dynamic scalings of the flow
close to collapse analytically and verify them in hydrodynamic simulations. The
results of this work imply that, in dimension higher than one, Navier-Stokes
hydrodynamics of a dilute granular gas is prone to finite-time density blowups.
This provides a natural explanation to the formation of densely packed clusters
of particles in a variety of initially dilute granular flows.Comment: 18 pages, 19 figure
Stereoscopic electron spectroscopy of solar hard X-ray flares with a single spacecraft
Hard X-ray (HXR) spectroscopy is the most direct method of diagnosing
energetic electrons in solar flares. Here we present a technique which allows
us to use a single HXR spectrum to determine an effectively stereoscopic
electron energy distribution. Considering the Sun's surface to act as a
'Compton mirror' allows us to look at emitting electrons also from behind the
source, providing vital information on downward-propagating particles. Using
this technique we determine simultaneously the electron spectra of downward and
upward directed electrons for two solar flares observed by the Ramaty High
Energy Solar Spectroscopic Imager (RHESSI). The results reveal surprisingly
near-isotropic electron distributions, which contrast strongly with the
expectations from the standard model which invokes strong downward beaming,
including collisional thick-target model.Comment: 7 pages, 3 figures, accepted to Astrophysical Journal Letter
Magnetic Field Limitations on Advection Dominated Flows
Recent papers discussing advection dominated accretion flows (ADAF) as a
solution for astrophysical accretion problems should be treated with some
caution because of their uncertain physical basis. The suggestions underlying
ADAF involve ignoring the magnetic field reconnection in heating of the plasma
flow, assuming electron heating due only to binary Coulomb collisions with
ions. Here, we analyze the physical processes in optically thin accretion flows
at low accretion rates including the influence of an equipartition turbulent
magnetic field. For these conditions there is continuous destruction of
magnetic flux by reconnection.
The reconnection is expected to significantly heat the electrons which can
efficiently emit magnetobremstrahlung radiation. Because of this electron
emission, the radiative efficiency of the ADAF is not small. We suggest that
the small luminosities of nearby galactic black holes is due to outflows rather
than ADAF accretion.Comment: 7 pages, 3 figures, Submitted to Ap
Blue spectra and induced formation of primordial black holes
We investigate the statistical properties of primordial black hole (PBH)
formation in the very early Universe. We show that the high level of
inhomogeneity of the early Universe leads to the formation of the first
generation PBHs. %The existence of these PBHs This causes later the appearance
of a dust-like phase of the cosmological expansion. We discuss here a new
mechanism for the second generation of PBH formation during the dust-like
phase. This mechanism is based on the coagulation process. We demonstrate that
the blue power spectrum of initial adiabatic perturbations after inflation
leads to overproduction of primordial black holes with gg if the power index is .Comment: 16 pages, 2 figure
- …
