113 research outputs found

    Paddock Scale Water Quality Monitoring of Vegetable-Sugarcane and Legume-Sugarcane Farming Systems - Summary report 2010-2013 Burnett Mary Region

    Get PDF
    The project has delivered a number of key findings from what were years in which summer rainfall was 50‐100% greater than the long term average. These were as follows – - Sediment and nutrient losses during grain legume or vegetable rotations with sugarcane were dominated by losses occurring during the sugarcane crop. - The most sensitive period for soil and nutrient loss occurred during the transition period between crops in the rotation, and during the early stages of crop establishment. - Soil disturbance, the presence of groundcover (crop residues/trash/living mulch) and soil compaction were the major factors affecting runoff volumes and loads of sediment and total nitrogen (N) and phosphorus (P). The most effective management systems that ameliorated soil compaction, minimised soil disturbance and maintained ground cover reduced sediment and nutrient loads by 50‐60%. - Legume residues or legume companion crops were effective at providing groundcover and at reducing soil loss, but also tended to increase losses of the biologically active fractions of N (Dissolved Inorganic N) and P (Filterable Reactive P). - Runoff losses of DIN were relatively small in all systems tested (0.7‐ 2.7 kg DIN/ha), but leaching losses of nitrate‐N were estimated in excess of 140 kg N/ha from the current commercial practice intensive vegetable systems. This leached N was lost before being able to be recovered by the subsequent sugarcane crop and represents a risk to groundwater quality. - The risk of offsite losses from herbicides with long half‐lives in the field was illustrated by high concentrations of Diuron recorded in runoff that occurred more than 2.5 months after herbicide application. There was also concern about increased losses of Metribuzin when applied in systems with reduced tillage and surface residues/trash. - Similarly effective weed control during the plant cane crop could be achieved by reduced application rates of residual herbicides and/or the replacement of residual herbicides with less persistent knockdown products. However, excluding Diuron in the ratoon crop resulted in poor weed control and the need for additional herbicide applications. - The most substantial improvements in runoff (if not drainage) water quality were achieved at the expense of cropping system productivity – especially in the systems with intensive vegetables. The management strategies showing most promise involve strategic/zonal tillage, reduced nutrient inputs and reduced rates of residual herbicide use. These promising systems will need research attention to fine tune management so as to limit constraints to productivity and profitability

    Carbon losses in terrestrial hydrological pathways in sugarcane cropping systems of Australia

    Get PDF
    Climate change and carbon (C) sequestration are a major focus of research in the twenty-first century. Globally, soils store about 300 times the amount of C that is released per annum through the burning of fossil fuels (Schulze and Freibauer 2005). Land clearing and introduction of agricultural systems have led to rapid declines in soil C reserves. The recent introduction of conservation agricultural practices has not led to a reversing of the decline in soil C content, although it has minimized the rate of decline (Baker et al. 2007; Hulugalle and Scott 2008). Lal (2003) estimated the quantum of C pools in the atmosphere, terrestrial ecosystems, and oceans and reported a “missing C” component in the world C budget. Though not proven yet, this could be linked to C losses through runoff and soil erosion (Lal 2005) and a lack of C accounting in inland water bodies (Cole et al. 2007). Land management practices to minimize the microbial respiration and soil organic C (SOC) decline such as minimum tillage or no tillage were extensively studied in the past, and the soil erosion and runoff studies monitoring those management systems focused on other nutrients such as nitrogen (N) and phosphorus (P)

    Ανάλυση και βελτιστοποίηση της επίδοσης cloud εφαρμογών σε διαμοιραζόμενα περιβάλλοντα με προσαρμοστική ανάθεση πόρων

    Get PDF
    Intensive tillage, high fertiliser inputs, and plastic mulch on the soil surface are widely used by vegetable growers. A field investigation was carried out to quantify the impact of alternate land management and fertiliser practices designed to improve offsite water quality on the productivity of vegetable rotations within a sugarcane farming system in a coastal region of subtropical northeast Australia. Successive crops of capsicum and zucchini were grown in summer 2010–2011 and winter 2011, respectively, using four different management practices. These were ‘Conventional’—the current conventional practice using plastic mulch, bare inter-rows, conventional tillage, and commercial fertiliser inputs; ‘Improved’—a modified conventional system using plastic mulch in the cropped area, an inter-row vegetative mulch, zonal tillage, and reduced fertiliser rates; ‘Trash mulch’—using cane trash or forage sorghum residues instead of plastic mulch, with reduced fertiliser rates and minimum or zero tillage; and ‘Vegetative mulch’—using Rhodes grass or forage sorghum residues instead of plastic mulch, with minimum or zero tillage and reduced fertiliser rates. During the second vegetable crop (zucchini), each management practice was split to receive either soil test-based nutrient inputs or a common, luxury rate of nutrient addition. The ’Trash mulch’ and ‘Vegetative mulch’ systems produced up to 43% lower capsicum and zucchini yields than either of the plastic mulch systems. The relative yield difference between trash systems and plastic mulch management systems remained the same for both the soil test-based and high nutrient application strategies, suggesting that factors other than nutrition (e.g., soil temperature) were driving these differences

    Transomental defects as a cause of chronic abdominal pain, the role of diagnostic laparoscopy: a case series

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Introduction Transomental herniation is a rare but recognised clinical condition, which usually presents as an emergency with bowel obstruction. It accounts for 1-4% of intra-abdominal herniations. We reviewed 3 patients found to have a transomental defect during elective diagnostic laparoscopy performed for chronic abdominal pain. To our knowledge, there is no case series reported in the literature on transomental defect in the non-emergency situation. Case presentation A retrospective case note analysis of 3 patients, found to have transomental defect during elective diagnostic laparoscopy, was undertaken. Data were gathered with respect to clinical presentation, investigations performed, transomental defect size and outcome of surgery. All patients were followed up for 6 months post-operatively. Three females (age range 18-35 years) were referred with a 3-10 year history of chronic intermittent abdominal pain, often postprandial. Blood tests, radiological investigations (ultrasound, magnetic resonance imaging/computed tomography, small bowel studies) and endoscopy were all normal. In each case, diagnostic laparoscopy revealed the presence of a peripheral defect in the greater omentum, but no actual small bowel herniation. No other pathology was found. These defects were resected, which subsequently led to complete resolution of the patients' symptoms. Conclusion Chronic abdominal pain of unknown aetiology with normal radiological findings may be caused by intermittent obstruction due to small bowel herniation through a transomental defect. This should be considered during elective diagnostic laparoscopy, in the absence of any other obvious pathology. The omentum should be thoroughly inspected as a discrete entity and any such defects should be closed or resected

    Photoluminescence of SnO2 nanoparticles embedded in Al2O3

    Full text link
    "Tetragonal Sn nanoparticles of [?]15 nm diameter are produced in Al2O3 by direct Sn implantation at room temperature. After thermal annealing at 1000 degC in oxygen, the implantation-induced amorphous region recrystallized and the Sn nanoparticles turned into SnO2 nanoparticles with an average diameter of [?]30 nm as revealed by transmission electron microscopy. While no absorption and photoluminescence (PL) are observed from the metallic Sn nanoparticles, SnO2 nanoparticles exhibit an absorption edge at [?]280 nm and three emission bands at 410 nm, 520 nm and 700 nm, respectively. In addition to the previously reported blue and green emission from SnO2 nanostructures, a red PL band was observed due to the unique surface state of SnO2 nanoparticles embedded in Al2O3 substrate fabricated by ion implantation."http://deepblue.lib.umich.edu/bitstream/2027.42/64215/1/d8_22_225102.pd

    Influence of growth rate on the epitaxial orientation and crystalline quality of CeO2 thin films grown on Al2O3(0001)

    Get PDF
    Growth rate-induced epitaxial orientations and crystalline quality of CeO2 thin films grown on Al2O3(0001) by oxygen plasma-assisted molecular beam epitaxy were studied using in situ and ex situ characterization techniques. CeO2 grows as three-dimensional (3D) islands and two-dimensional layers at growth rates of 1-7 angstrom/min and \u3e = 9 angstrom/min, respectively. The formation of epitaxial CeO2(100) and CeO2(111) thin films occurs at growth rates of 1 angstrom/min and \u3e = 9 angstrom/min, respectively. Glancing-incidence x-ray diffraction measurements have shown that the films grown at intermediate growth rates (2-7 angstrom/min) consist of polycrystalline CeO2 along with CeO2(100). The thin film grown at 1 angstrom/min exhibits six in-plane domains, characteristic of well-aligned CeO2(100) crystallites. The content of the poorly aligned CeO2(100) crystallites increases with increasing growth rate from 2 to 7 angstrom/min, and three out of six in-plane domains gradually decrease and eventually disappear, as confirmed by XRD pole figures. At growth rates \u3e = 9 angstrom/min, CeO2(111) film with single in-plane domain was identified. The formation of CeO2(100) 3D islands at growth rates of 1-7 angstrom/min is a kinetically driven process unlike at growth rates \u3e = 9 angstrom/min which result in an energetically and thermodynamically more stable CeO2(111) surface

    Surface and Interface Properties of 10–12 Unit Cells Thick Sputter Deposited Epitaxial CeO 2

    Get PDF
    Ultrathin and continuous epitaxial films with relaxed lattice strain can potentially maintain more of its bulk physical and chemical properties and are useful as buffer layers. We study surface, interface, and microstructural properties of ultrathin (∼10–12 unit cells thick) epitaxial ceria films grown on single crystal YSZ substrates. The out-of -plane and in-plane lattice parameters indicate relaxation in the continuous film due to misfit dislocations seen by high-resolution transmission electron microscopy (HRTEM) and substrate roughness of ∼1-2 unit cells, confirmed by atomic force microscopy and HRTEM. A combination of secondary sputtering, lattice mismatch, substrate roughness, and surface reduction creating secondary phase was likely the cause of surface roughness which should be reduced to a minimum level for effective use of it as buffer layers

    Nitrogen doping of TiO2 photocatalyst forms a second eg state in the Oxygen (1s) NEXAFS pre-edge

    Full text link
    Close inspection of the pre-edge in oxygen near-edge x-ray absorption fine structure spectra of single step, gas phase synthesized titanium oxynitride photocatalysts with 20 nm particle size reveals an additional eg resonance in the VB that went unnoticed in previous TiO2 anion doping studies. The relative spectral weight of this Ti(3d)-O(2p) hybridized state with respect to and located between the readily established t2g and eg resonances scales qualitatively with the photocatalytic decomposition power, suggesting that this extra resonance bears co-responsibility for the photocatalytic performance of titanium oxynitrides at visible light wavelengths
    corecore