81 research outputs found

    Fluctuations in the level density of a Fermi gas

    Get PDF
    We present a theory that accurately describes the counting of excited states of a noninteracting fermionic gas. At high excitation energies the results reproduce Bethe's theory. At low energies oscillatory corrections to the many--body density of states, related to shell effects, are obtained. The fluctuations depend non-trivially on energy and particle number. Universality and connections with Poisson statistics and random matrix theory are established for regular and chaotic single--particle motion.Comment: 4 pages, 1 figur

    Nodal domain distributions for quantum maps

    Full text link
    The statistics of the nodal lines and nodal domains of the eigenfunctions of quantum billiards have recently been observed to be fingerprints of the chaoticity of the underlying classical motion by Blum et al. (Phys. Rev. Lett., Vol. 88 (2002), 114101) and by Bogomolny and Schmit (Phys. Rev. Lett., Vol. 88 (2002), 114102). These statistics were shown to be computable from the random wave model of the eigenfunctions. We here study the analogous problem for chaotic maps whose phase space is the two-torus. We show that the distributions of the numbers of nodal points and nodal domains of the eigenvectors of the corresponding quantum maps can be computed straightforwardly and exactly using random matrix theory. We compare the predictions with the results of numerical computations involving quantum perturbed cat maps.Comment: 7 pages, 2 figures. Second version: minor correction

    The Statistics of the Points Where Nodal Lines Intersect a Reference Curve

    Full text link
    We study the intersection points of a fixed planar curve Γ\Gamma with the nodal set of a translationally invariant and isotropic Gaussian random field \Psi(\bi{r}) and the zeros of its normal derivative across the curve. The intersection points form a discrete random process which is the object of this study. The field probability distribution function is completely specified by the correlation G(|\bi{r}-\bi{r}'|) = . Given an arbitrary G(|\bi{r}-\bi{r}'|), we compute the two point correlation function of the point process on the line, and derive other statistical measures (repulsion, rigidity) which characterize the short and long range correlations of the intersection points. We use these statistical measures to quantitatively characterize the complex patterns displayed by various kinds of nodal networks. We apply these statistics in particular to nodal patterns of random waves and of eigenfunctions of chaotic billiards. Of special interest is the observation that for monochromatic random waves, the number variance of the intersections with long straight segments grows like LlnLL \ln L, as opposed to the linear growth predicted by the percolation model, which was successfully used to predict other long range nodal properties of that field.Comment: 33 pages, 13 figures, 1 tabl

    Avoided intersections of nodal lines

    Full text link
    We consider real eigen-functions of the Schr\"odinger operator in 2-d. The nodal lines of separable systems form a regular grid, and the number of nodal crossings equals the number of nodal domains. In contrast, for wave functions of non integrable systems nodal intersections are rare, and for random waves, the expected number of intersections in any finite area vanishes. However, nodal lines display characteristic avoided crossings which we study in the present work. We define a measure for the avoidance range and compute its distribution for the random waves ensemble. We show that the avoidance range distribution of wave functions of chaotic systems follow the expected random wave distributions, whereas for wave functions of classically integrable but quantum non-separable wave functions, the distribution is quite different. Thus, the study of the avoidance distribution provides more support to the conjecture that nodal structures of chaotic systems are reproduced by the predictions of the random waves ensemble.Comment: 12 pages, 4 figure

    Universality in the flooding of regular islands by chaotic states

    Full text link
    We investigate the structure of eigenstates in systems with a mixed phase space in terms of their projection onto individual regular tori. Depending on dynamical tunneling rates and the Heisenberg time, regular states disappear and chaotic states flood the regular tori. For a quantitative understanding we introduce a random matrix model. The resulting statistical properties of eigenstates as a function of an effective coupling strength are in very good agreement with numerical results for a kicked system. We discuss the implications of these results for the applicability of the semiclassical eigenfunction hypothesis.Comment: 11 pages, 12 figure

    Geometric characterization of nodal domains: the area-to-perimeter ratio

    Full text link
    In an attempt to characterize the distribution of forms and shapes of nodal domains in wave functions, we define a geometric parameter - the ratio ρ\rho between the area of a domain and its perimeter, measured in units of the wavelength 1/E1/\sqrt{E}. We show that the distribution function P(ρ)P(\rho) can distinguish between domains in which the classical dynamics is regular or chaotic. For separable surfaces, we compute the limiting distribution, and show that it is supported by an interval, which is independent of the properties of the surface. In systems which are chaotic, or in random-waves, the area-to-perimeter distribution has substantially different features which we study numerically. We compare the features of the distribution for chaotic wave functions with the predictions of the percolation model to find agreement, but only for nodal domains which are big with respect to the wavelength scale. This work is also closely related to, and provides a new point of view on isoperimetric inequalities.Comment: 22 pages, 11 figure

    Correlations and fluctuations of a confined electron gas

    Full text link
    The grand potential Ω\Omega and the response R=Ω/xR = - \partial \Omega /\partial x of a phase-coherent confined noninteracting electron gas depend sensitively on chemical potential μ\mu or external parameter xx. We compute their autocorrelation as a function of μ\mu, xx and temperature. The result is related to the short-time dynamics of the corresponding classical system, implying in general the absence of a universal regime. Chaotic, diffusive and integrable motions are investigated, and illustrated numerically. The autocorrelation of the persistent current of a disordered mesoscopic ring is also computed.Comment: 12 pages, 1 figure, to appear in Phys. Rev.

    Nodal domains on quantum graphs

    Full text link
    We consider the real eigenfunctions of the Schr\"odinger operator on graphs, and count their nodal domains. The number of nodal domains fluctuates within an interval whose size equals the number of bonds BB. For well connected graphs, with incommensurate bond lengths, the distribution of the number of nodal domains in the interval mentioned above approaches a Gaussian distribution in the limit when the number of vertices is large. The approach to this limit is not simple, and we discuss it in detail. At the same time we define a random wave model for graphs, and compare the predictions of this model with analytic and numerical computations.Comment: 19 pages, uses IOP journal style file

    Wavefunctions, Green's functions and expectation values in terms of spectral determinants

    Full text link
    We derive semiclassical approximations for wavefunctions, Green's functions and expectation values for classically chaotic quantum systems. Our method consists of applying singular and regular perturbations to quantum Hamiltonians. The wavefunctions, Green's functions and expectation values of the unperturbed Hamiltonian are expressed in terms of the spectral determinant of the perturbed Hamiltonian. Semiclassical resummation methods for spectral determinants are applied and yield approximations in terms of a finite number of classical trajectories. The final formulas have a simple form. In contrast to Poincare surface of section methods, the resummation is done in terms of the periods of the trajectories.Comment: 18 pages, no figure

    Structure optimization effects on the electronic properties of Bi2_2Sr2_2CaCu2_2O8_8

    Full text link
    We present detailed first-principles calculations for the normal state electronic properties of the high TC_C superconductor Bi2_2Sr2_2CaCu2_2O8_8, by means of the linearized augmented plane wave (LAPW) method within the framework of density functional theory (DFT). As a first step, the body centered tetragonal (BCT) cell has been adopted, and optimized regarding its volume, c/ac/a ratio and internal atomic positions by total energy and force minimizations. The full optimization of the BCT cell leads to small but visible changes in the topology of the Fermi surface, rounding the shape of CuO2_2 barrels, and causing both the BiO bands, responsible for the pockets near the \textit{\=M} 2D symmetry point, to dip below the Fermi level. We have then studied the influence of the distortions in the BiO plane observed in nature by means of a 2×2\sqrt{2}\times\sqrt{2} orthorhombic cell (AD-ORTH) with BbmbBbmb space group. Contrary to what has been observed for the Bi-2201 compound, we find that for Bi-2212 the distortion does not sensibly shift the BiO bands which retain their metallic character. As a severe test for the considered structures we present Raman-active phonon frequencies (q=0q = 0) and eigenvectors calculated within the frozen-phonon approximation. Focussing on the totally symmetric Ag_{g} modes, we observe that for a reliable attribution of the peaks observed in Raman experiments, both cc- and a-axis vibrations must be taken into account, the latter being activated by the in-plane orthorhombic distortion.Comment: 22 pages, 4 figure
    corecore