79 research outputs found

    Sequential detection of alphafetoprotein-bearing cells in blood stem cell fraction of germ cell tumour patients

    Get PDF
    High-dose chemotherapy with peripheral blood stem cell (PBSC) transplantation in advanced germ cell tumour (GCT) patients is widely applied. The aims of this study were: (1) To examine the presence of alphafetoprotein (AFP) bearing tumour cells in PBSC harvests from advanced GCT patients obtained after multiple cycles of induction chemotherapy. (2) To determine whether induction chemotherapy contributed to in vivo purging of the tumour. We evaluated cryopreserved PBSC samples from 5 patients with advanced stage II/III AFP producing GCT. PBSC were separated after the first, second and third cycles of induction chemotherapy. Those samples were analysed using the nested reverse transcription polymerase chain reaction (RT-PCR) method to detect AFP mRNA. Although, in all patients, AFP mRNA was detected in PBSC samples after the first or second cycle of induction chemotherapy, but was not detected in 3 of 4 samples after the third cycle of chemotherapy. Although it is not clear whether tumour cells contaminating PBSC fraction contribute to disease relapse, PBSC harvested after at least 3 cycles of induction chemotherapy might be recommended to avoid such a possibility. © 2001 Cancer Research Campaignhttp://www.bjcancer.co

    Transcriptional impairment of β-catenin/E-cadherin complex is not associated with β-catenin mutations in colorectal carcinomas

    Get PDF
    We report the absence of β-catenin mutations in 63 sporadic colorectal carcinomas (SCRCs) with demonstrated decreased β-catenin and E-cadherin mRNA expression and E-cadherin protein expression in a subset of carcinomas examined, suggesting that β-catenin mutations are an extremely rare phenomenon in SCRCs and are not responsible for the transcriptional impairment of the β-catenin/E-cadherin adhesion complex observed in these tumours

    Prognostic impact of FAS/CD95/APO-1 in urothelial cancers: decreased expression of Fas is associated with disease progression

    Get PDF
    The death receptor Fas (Apo1/CD95) and Fas ligand (FasL) system is recognised as a major pathway for the induction of apoptosis in vivo, and antiapoptosis via its blockade plays a critical role in carcinogenesis and progression in several malignancies. However, the function of Fas–FasL system in urothelial cancer (UC) has not been elucidated. We therefore investigated the expression of Fas, FasL and Decoy receptor 3 for FasL (DcR3) in UC specimens and cell lines, and examined the cytotoxic effect of an anti-Fas-activating monoclonal antibody (mAb) in vitro. Immunohistochemical examinations of Fas-related molecules were performed on 123 UC and 30 normal urothelium surgical specimens. Normal urothelium showed Fas staining in the cell membrane and cytoplasm. In UC, less frequent Fas expression was significantly associated with a higher pathological grade (P<0.0001), a more advanced stage (P=0.023) and poorer prognosis (P=0.010). Fas and the absence thereof were suggested to be crucial factors with which to select patients requiring more aggressive treatment. Moreover, low-dose anti-Fas-activating mAb sensitised resistant cells to adriamycin, and this synergistic effect could be applied in the development of new treatment strategy for UC patients with multidrug-resistant tumours

    Double inhibition of XIAP and Bcl-2 axis is beneficial for retrieving sensitivity of renal cell cancer to apoptosis

    Get PDF
    Renal cell carcinoma (RCC) is known to be resistant to chemo- and radiotherapy due to a high apoptotic threshold. Smac and XIAP (X-linked inhibitor of apoptosis protein) proteins were detected in all RCC cell lines and tissue samples examined. We modulated the function of XIAP, either through its constitutional downregulation with an shRNA vector or by applying a Smac-mimicking peptide. Among RCC cell lines, Caki1 expresses the highest levels of XIAP. We transfected Caki1 with XIAP-targeting shRNA vector and generated stable clones. XIAP was knocked down by RNA interference in clone no. 14 by 81.6% and in clone no. 19 by 85.3%. Compared to the parental and mock-transfected cells, neither clone was more sensitive to conventional chemotherapeutic agents, but both clones were more susceptible to Fas stimulation (P<0.0001) and to pharmacological Bcl-2 inhibition (P<0.0001), as well as to a combination of the two (P<0.0001). Mature Smac binds to XIAP via the N-terminal residues, disrupting its interaction with caspases and promoting their activity. We determined that exposure of Caki1 cells to Smac-N7 peptide (AVPIAQK) resulted in a slight but significant decrease in viability (P=0.0031) and potentiated cisplatin's effect (P=0.0027). In contrast with point targeting of XIAP by shRNA, Smac-N7 peptide is active against several IAP (inhibitor of apoptosis protein) family members, which can explain its role in sensitising cells to cisplatin. Our results suggest that multiple targeting of both Bcl-2 and XIAP or, alternatively, of several IAP family members by the Smac-N7 peptide is a potent way to overcome resistance of RCC to apoptosis-triggering treatment modalities, and might be a new tool for molecular targeted therapy

    X-linked inhibitor of apoptosis positive nuclear labeling: a new independent prognostic biomarker of breast invasive ductal carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It's well recognized that X-linked inhibitor of apoptosis (XIAP) was the most potent caspase inhibitor and second mitochondria-derived activator of caspase (Smac) was the antagonist of XIAP. Experiments in vitro identified that down regulation of XIAP expression or applying Smac mimics could sensitize breast cancer cells to chemotherapeutics and promote apoptosis. However, expression status and biologic or prognostic significance of XIAP/Smac in breast invasive ductal carcinoma (IDC) were not clear. The present study aimed to investigate relationship among expression status of XIAP/Smac, apoptosis index (AI), clinicopathologic parameters and prognosis in IDC.</p> <p>Methods</p> <p>Immunohistochemistry and TUNEL experiment were performed to detect expression of XIAP, Smac, ER, PR, HER2 and AI in 102 cases of paraffin-embedded IDC samples respectively. Expression of XIAP/Smac were also detected in limited 8 cases of fresh IDC specimens with Western blot.</p> <p>Results</p> <p>Positive ratio and immunoscore of XIAP was markedly higher than Smac in IDC (<it>P </it>< 0.0001). It was noteworthy that 44 cases of IDC were positive in nuclear for XIAP, but none was for Smac. Expression status of Smac was more prevalent in HER2 positive group than negative group (<it>P </it>< 0.0001) and AI was positively correlated with HER2 protein expression (r<sub>s </sub>= 0.265, <it>P </it>= 0.017). The present study first revealed that XIAP positive nuclear labeling (XIAP-N), but not cytoplasmic staining (XIAP-C), was the apoptotic marker correlated significantly with patients' shortened overall survival (<it>P </it>= 0.039). Survival analysis demonstrated that XIAP-N was a new independent prognostic factor except for patient age and lymph node status.</p> <p>Conclusion</p> <p>Disturbed balance of expression between XIAP and Smac probably contributed to carcinogenesis and XIAP positive nuclear labeling was a new independent prognostic biomarker of breast IDC.</p

    Validation of pharmacodynamic assays to evaluate the clinical efficacy of an antisense compound (AEG 35156) targeted to the X-linked inhibitor of apoptosis protein XIAP

    Get PDF
    The inhibitor of apoptosis protein, XIAP, is frequently overexpressed in chemoresistant human tumours. An antisense oligonucleotide (AEG 35156/GEM 640) that targets XIAP has recently entered phase I trials in the UK. Method validation data are presented on three pharmacodynamic assays that will be utilised during this trial. Quantitative RT-PCR was based on a Taqman assay and was confirmed to be specific for XIAP. Assay linearity extended over four orders of magnitude. MDA-MB-231/U6-E1 cells and clone X-G4 stably expressing an RNAi vector against XIAP were chosen as high and low XIAP expression quality controls (QCs). Within-day and between-day coefficients of variation (CVs) in precision for cycle threshold (CT) and delta CT values (employing GAPDH and beta 2 microglobulin as housekeepers) were always less than 10%. A Western blotting technique was validated using a GST–XIAP fusion protein as a standard and HeLa cells and SF268 (human glioblastoma) cells as high and low XIAP expression QCs. Specificity of the final choice of antibody for XIAP was evaluated by analysing a panel of cell lines including clone X-G4. The assay was linear over a 29-fold range of protein concentration and between-day precision was 29% for the low QC and 23% for the high QC when normalised to GAPDH. XIAP protein was also shown to be stable at −80°C for at least 60 days. M30-Apoptosense™ plasma Elisa detects a caspase-cleaved fragment of cytokeratin 18 (CK18), believed to be a surrogate marker for tumour cell apoptosis. Generation of an independent QC was achieved through the treatment of X-G4 cells with staurosporine and collection of media. Measurements on assay precision and kit-to-kit QC were always less than 10%. The M30 antigen (CK18-Asp396) was stable for 3 months at −80°C, while at 37°C it had a half-life of 80–100 h in healthy volunteer plasma. Results from the phase I trial are eagerly awaited
    corecore