28 research outputs found

    \u3cem\u3e Albizia procera\u3c/em\u3e Based Silvipastoral System: An Ideal Alternate Land Use System for Sustainable Forage Production in Semi-Arid Region

    Get PDF
    India’s economy is agro-based and about 69% of the total population depends on it for their livelihood (GoI, 2013). Livestock is the integral component of Indian agriculture since time immemorial. Its contribution to national economy through milk, meat, wool as well as farmyard manure is enormous. India has the largest number of livestock, representing over 17% of the world. Among four important species of livestock, cattle represent over 43% of the population followed by buffaloes (19%), goats (26%) and sheep (10%). The share of livestock reared is highest in marginal followed by small and semi-medium land holders implying that marginal holders and small land holders are playing seminal role in development of livestock sector in country. The productivity of livestock and growth of animal husbandry are closely linked with the biomass and quality of forages. Currently there has been radical change in realising the importance of forages in integrated farming system, crop diversification, watershed management, restoration of degraded lands and climate resilient agriculture. Grasslands represent some 70% of global agricultural land area; unfortunately as much as 35% of the grasslands are degraded. The insufficient fodder availability has adversely affected all the three systems of livestock production. Silvipasture systems is an integrated approach of growing ideal combinations of grasses, legumes and trees for higher land productivity, conserving biodiversity and nutrients and producing forage, timber and firewood from a single unit area on a sustainable basis. The trees and shrubs used in silvipasture are used primarily to produce fodder for livestock. Looking at the enormous production potential of the slivipastoral systems, it is pertinent to introduce these in the arid and semi-arid regions so that large area of wasteland which is not suitable for crop production can be used for of fodder and biomass production. Dev et al. (2014) observed significant impact of participatory silvipastoral intervention and soil conservation measures for forage resource enhancement in western Himalaya. The study aims to present the suitability of silvipastoral systems in detail and advocate the extensive use of silvipasture in semi-arid regions for higher production

    Current Trends in Nanoporous Anodized Alumina Platforms for Biosensing Applications

    Get PDF
    Pristine aluminum (Al) has received great deal of attention on fabrication of nanoporous anodized alumina (NAA) with arrays of nanosized uniform pores with controllable pore sizes and lengths by the anodization process. There are many applications of NAA in the field of biosensors due to its numerous key factors such as ease of fabrication, high surface area, chemical stability and detection of biomolecules through bioconjugation of active molecules, its rapidness, and real-time monitoring. Herein, we reviewed the recent trends on the fabrication of NAA for high sensitive biosensor platforms like bare sensors, gold coated sensors, multilayer sensors, and microfluidic device supported sensors for the detection of various biomolecules. In addition, we have discussed the future prospectus about the improvement of NAA based biosensors for the detection of biomolecules

    Test-to-Stay After Exposure to SARS-CoV-2 in K-12 Schools

    Get PDF
    OBJECTIVES: We evaluated the safety and efficacy of a test-to-stay program for unvaccinated students and staff who experienced an unmasked, in-school exposure to someone with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Serial testing instead of quarantine was offered to asymptomatic contacts. We measured secondary and tertiary transmission rates within participating schools and in-school days preserved for participants. METHODS: Participating staff or students from universally masked districts in North Carolina underwent rapid antigen testing at set intervals up to 7 days after known exposure. Collected data included location or setting of exposure, participant symptoms, and school absences up to 14 days after enrollment. Outcomes included tertiary transmission, secondary transmission, and school days saved among test-to-stay participants. A prespecified interim safety analysis occurred after 1 month of enrollment. RESULTS: We enrolled 367 participants and completed 14-day follow-up on all participants for this analysis. Nearly all (215 of 238, 90%) exposure encounters involved an unmasked index case and an unmasked close contact, with most (353 of 366, 96%) occurring indoors, during lunch (137 of 357, 39%) or athletics (45 of 357, 13%). Secondary attack rate was 1.7% (95% confidence interval: 0.6%-4.7%) based on 883 SARS-CoV-2 serial rapid antigen tests with results from 357 participants; no tertiary cases were identified, and 1628 (92%) school days were saved through test-to-stay program implementation out of 1764 days potentially missed. CONCLUSION: After unmasked in-school exposure to SARS-CoV-2, even in a mostly unvaccinated population, a test-to-stay strategy is a safe alternative to quarantine

    Recent advances in microfluidic platform for physical and immunological detection and capture of circulating tumor cells

    Get PDF
    CTCs (circulating tumor cells) are well-known for their use in clinical trials for tumor diagnosis. Capturing and isolating these CTCs from whole blood samples has enormous benefits in cancer diagnosis and treatment. In general, various approaches are being used to separate malignant cells, including immunomagnets, macroscale filters, centrifuges, dielectrophoresis, and immunological approaches. These procedures, on the other hand, are time-consuming and necessitate multiple high-level operational protocols. In addition, considering their low efficiency and throughput, the processes of capturing and isolating CTCs face tremendous challenges. Meanwhile, recent advances in microfluidic devices promise unprecedented advantages for capturing and isolating CTCs with greater efficiency, sensitivity, selectivity and accuracy. In this regard, this review article focuses primarily on the various fabrication methodologies involved in microfluidic devices and techniques specifically used to capture and isolate CTCs using various physical and biological methods as well as their conceptual ideas, advantages and disadvantages.Department of Science & Technology | Ref. TDP/BDTD/32/2019Department of Science and Technology | Ref. DST/TDT/DDP-31/2021Taif University | Ref. TURSP-2020/04European Commission | Ref. H2020, n. 89422

    Mg–Al-Layered Double Hydroxide (LDH) Modified Diatoms for Highly Efficient Removal of Congo Red from Aqueous Solution

    Get PDF
    In this work, diatomaceous earth (DE) or diatoms are modified with Mg–Al-layered double hydroxide (DE-LDH) using the facile co-precipitation method to demonstrate their application for the removal of toxic dyes such as Congo Red (CR), which was used as a model. Field emission scanning electron microscopy (FE-SEM) characterization confirms the successful modification of diatom microcapsules structures, showing their surface decorated with LDH nano patches with sheet-like morphologies. The surface area of the DE was enhanced from 28 to 51 m2/g after modification with LDH. The adsorption studies showed that the maximum CR removal efficiency of DE and DE-LDH was ~15% and ~98%, respectively at pH 7, which is a significant improvement compared with unmodified DE. The maximum adsorption capacities of DE-LDH were improved ten times (305.8 mg/g) compared with the bare DE (23.2 mg/g), showing very high adsorption performances. The recyclability study of DE-LDH up to five cycles, after desorbing CR either by methanol or by NaOH, showed the efficient removal of the CR by up to three cycles via adsorption. The presented study suggests the promising application of DE-LDH as an effective material for application in the removal of CR from aqueous solutions for industrial wastewater treatment

    Nanodiamonds and their surface modification strategies for drug delivery applications

    No full text
    Nanodiamonds (NDs) have excellent mechanical, chemical and biological properties with many advantages like good biocompatibility, tailorable surface chemistry, and low cytotoxicity that makes them as most desired candidates for the drug delivery applications compared with other carbon materials including fullerenes, carbon black, carbon nanotubes (CNTs) and graphenes. Since NDs are distinctive among other carbon nanomaterials, they are recognized and considered as the most potential nanomaterials for technological and biomedical applications. Surface modifications are known to be one of the active methods to enhance or fine tune their properties. Thus, surface modified NDs could assist to adsorb or conjugate various drug molecules, target ligands and nucleic acids for drug delivery applications. This review focuses on the NDs synthesis and surface modifications of NDs and their recent applications in the field of drug delivery. Eventually, the review is summarized with a brief conclusion and future prospects in this field.U.T. Uthappa, O.R. Arvind, G. Sriram, Dusan Losic, Ho-Young-Jung, Madhuprasad Kigga, Mahaveer D. Kurkur

    Engineering MIL-100(Fe) on 3D porous natural diatoms as a versatile high performing platform for controlled isoniazid drug release, Fenton's catalysis for malachite green dye degradation and environmental adsorbents for Pb2+ removal and dyes

    No full text
    Metal-organic frameworks (MOFs) emerged as one of the promising functional materials for broad applications. To improve the sustainability of their synthetic route and extend their applications are still demanding and challenging task. Herein, to address this problem, we report practical use of “eco-friendly” approach to create new type of hybrid materials by combining MOFs with naturally available hierarchical diatom biosilica (DE) acts as 3D porous scaffolds. This combination of high surface area, an unique 3D diatom architecture with 2D MOFs structure with specific chemical functionalities –OH, –COOH and Fe atoms confined in MIL-100(Fe)-DE hybrid materials and explored for a wide range of applications like drug delivery, catalyst support and environmental adsorbents. To prove drug delivery application for MIL-100(Fe)-DE, isoniazid (INH) anti-TBC (tuberculosis) drug is selected as typical drug model showing an enhanced drug loading capacity of 9.6 ± 1.6% and an extended in vitro controlled drug release performances over 23 days. This is significant improvement of short drug release characterstics and biological half life of INH (1–4 h) that limits to rich full therapeutic benefits for treatment of TBC. A heterogeneous Fenton’s catalysis study of MIL-100(Fe)-DE showed a rapid degradation of Malachite green (MG) dye within 60 min with degradation efficiency of 99.02 ± 1.3%. To prove environment remediation performances at 25 °C and in pH 6, MIL-100(Fe)-DE displayed efficient removal of Pb2+ with removal efficiency of 96.45 ± 2.1%, high adsorption capacity of 155 mg/g and the improved partition co-efficient (PC) was 87.32 mg.g−1 .”M−1 for Pb2+ of (50 mg/L) with excellent reusability. Finally, MIL-100(Fe)-DE hybrid was tested for the removal of cationic dyes such as methylene blue (MB), rhodamine B (RhB) and anionic dyes like congo red (CR) and erichrome black T (EBT) showing 96.10 ± 1.3, 75.11 ± 1.95, 98.11 ± 1.7 and 76 ± 1.88% of removal efficiency respectively.U.T. Uthappa, G. Sriram, O.R. Arvind, Sandeep Kumar, Ho-Young-Jung, Gururaj M. Neelgund, Dusan Losic, Mahaveer D. Kurkur

    Amine activated diatom xerogel hybrid material for efficient removal of hazardous dye

    No full text
    The effective removal of organic pollutants from aqueous media is still an eminent challenge. In the present work, naturally available diatomaceous earth (DE) particles was surface modified with mesoporous silica xerogel denotes as diatom xerogel material. Subsequently amine functionality has been successfully introduced on diatom xerogel (DXEA) for the efficient removal of hazardous dye, Eriochrome Black T (EBT). The adsorbents before and after EBT adsorption were characterized using various techniques such as XRD, FE-SEM, FTIR and BET. The adsorption process was conducted by varying many parameters such as pH, dosage, initial concentration of dye and time. The designed adsorbent, DXEA showed increased removal efficiency (∌99 %) in comparison with neat DE (∌58 %) due to the presence of amine functional group, which favours the rapid adsorption of EBT. This study showed that adsorbent DXEA was adequate to remove 50 mg/L and 100 mg/L of aqueous EBT in 5 and 60 min of contact time respectively. The maximum dye adsorption capacity of DXEA was found to be ∌62 mg/g whereas, for DE it was ∌56 mg/g. The dye adsorption kinetics of EBT onto both the DXEA and the DE follow the pseudo-second-order model. Also, DXEA was used for selective removal of EBT in the presence of other dyes and recycle studies were discussed. These studies showed that DXEA is a promising material for EBT removal by adsorption in real sample

    Ceria decorated porous diatom-xerogel as an effective adsorbent for the efficient removal of Eriochrome Black T

    No full text
    Diatomaceous earth or diatom (DE) are naturally available and low cost micro particles with distinct porous structure were used as an adsorbent for the removal of a hazardous dye, Eriochrome Black T (EBT). The surface modification of these DE were performed by sol-gel and hydrothermal methods to obtain a series of adsorbents such as diatom-ceria (DC), diatom-silica xerogel (DX), and diatom-silica xerogel-ceria (DXC). A cauliflower like morphology structure of ceria was observed on DE and DX. The adsorption performance of EBT was conducted by varying various parameters such as pH, adsorbent dosage, initial concentration, contact time and ionic strength. The materials DE, DC, DX and DXC showed the EBT removal efficiencies of 52, 77, 20, and 93%, respectively. The maximum adsorption capacity (qm) of DE, DC, DX and DXC was found to be 13.83, 23.64, 0.2 and 47.02 mgg for the adsorption of EBT, respectively. The selectivity of EBT towards DXC was evaluated by treating a mixture of anionic dyes. The dye removal experiments was performed in presence of inorganic salts, however the presence of these salts did not affect the removal efficiency of DXC. Furthermore, the reusability of DXC was studied by recycling it up to 5 times and even at 5th cycle a removal efficiency of ∌66.8% was found. Thus, these studies demonstrate that the DXC material could be a promising candidate for the removal of EBT via adsorption for real time application in water treatment

    Naturally available diatomite and their surface modification for the removal of hazardous dye and metal ions: a review

    No full text
    The presence of toxic pollutants such as dyes and metal ions at higher concentrations in water is very harmful to the environment. Removal of these pollutants using diatomaceous earth or diatomite (DE) and surface-modified DE has been extensively explored due to their excellent physio-chemical properties and low cost. Therefore, naturally available DE being inexpensive, their surface modified adsorbents could be one of the potential candidates for the wastewater treatment in the future. In this context, the current review has been summarized for the removal of both pollutants i.e., dyes and metal ions by surface-modified DE using the facile adsorption process. In addition, this review is prominently focused on the various modification process of DE, their cost-effectiveness; the physio-chemical characteristics and their maximum adsorption capacity. Further, real-time scenarios of reported adsorbents were tabulated based on the cost of the process along with the adsorption capacity of these adsorbents
    corecore