11 research outputs found

    Electrophysical Characteristics of a Polymer Composite Based on Ultrahigh Molecular Weight Polyethylene with CuO Nanoparticles

    Get PDF
    Методом импедансной спектроскопии исследованы электрофизические свойства композитного материала на основе сверхвысокомолекулярного полиэтилена с ограниченной массовой концентрацией 0,5 мас.% оксида меди CuO в диапазоне частот от 102 до 108 Гц. Предполагается, что введение в состав полимера малых концентраций наночастиц способствует более равномерному их осаждению на поверхностях полимерных гранул. Это позволяет в процессе тестирования таких образцов выявить наиболее вероятные механизмы их поляризации и протекания электрического тока в относительно однородном ансамбле наночастиц в полимерной матрице. Установлено, что внедряемые в полимерную матрицу наночастицы незначительно влияют на процессы электрической поляризации, но приводят к появлению частотно-зависимой проводимости в широком диапазоне частот. Этот процесс сопровождается существенным возрастанием диэлектрических потерь. Электрофизические характеристики полученных композитов обсуждаются с учётом переноса электрических зарядов (ионов или электронов) как по внутренней, так и по поверхностной структуре наночастиц CuOThe electrophysical properties of a composite material based on ultrahigh molecular weight polyethylene with a limited mass concentration of 0.5 wt% copper oxide CuO in the frequency range from 102 to 108 Hz were studied by impedance spectroscopy. It is assumed that the introduction of low concentrations of nanoparticles into the polymer composition contributes to their more uniform deposition on the surfaces of polymer granules. This makes it possible to reveal the most probable mechanisms of their polarization and the flow of electric current in a relatively homogeneous ensemble of nanoparticles in a polymer matrix during testing of such samples. It has been established that nanoparticles introduced into the polymer matrix have little effect on the processes of electric polarization, but lead to the appearance of frequency-dependent conductivity in a wide frequency range. This process is accompanied by a significant increase in dielectric losses. The electrophysical characteristics of the resulting composites are discussed taking into account the transfer of electric charges (ions or electrons) both along the internal and surface structures of CuO nanoparticle

    Multicomponent Electrocatalytic Selective Approach to Unsymmetrical Spiro[furo[3,2-c]pyran-2,5′-pyrimidine] Scaffold under a Column Chromatography-Free Protocol at Room Temperature

    No full text
    Electrochemical synthesis suggested a mild, green and atom-efficient route to interesting and useful molecules, thus avoiding harsh chemical oxidizing and reducing agents used in traditional synthetic methods. Organic electrochemistry offers an excellent alternative to conventional methods of organic synthesis and creates a modern tool for carrying out organic synthesis, including cascade and multicomponent ones. In this research, a novel electrocatalytic multicomponent transformation was found: the electrochemical multicomponent assembly of arylaldehydes, N,N′-dimethylbarbituric acid and 4-hydroxy-6-methyl-2H-pyran-2-one in one pot reaction was carried out in alcohols in an undivided cell in the presence of alkali metal halides with the selective formation of substituted unsymmetrical 1′,3′,6-trimethyl-3-aryl-2′H,3H,4H-spiro[furo[3,2-c]pyran-2,5′-pyrimidine]-2′,4,4′,6′(1′H,3′H)-tetraones in 73–82% yields. This new electrocatalytic process is a selective, facile and efficient way to obtain spiro[furo[3,2-c]pyran-2,5′-pyrimidines]. According to screening molecular docking data using a self-made Python script in Flare, all synthesized compounds may be prominent for different medical applications, such as breast cancer, neurodegenerative diseases and treatments connected with urinary tract, bones and the cardiovascular system

    Multicomponent Electrocatalytic Selective Approach to Unsymmetrical Spiro[furo[3,2-<i>c</i>]pyran-2,5′-pyrimidine] Scaffold under a Column Chromatography-Free Protocol at Room Temperature

    No full text
    Electrochemical synthesis suggested a mild, green and atom-efficient route to interesting and useful molecules, thus avoiding harsh chemical oxidizing and reducing agents used in traditional synthetic methods. Organic electrochemistry offers an excellent alternative to conventional methods of organic synthesis and creates a modern tool for carrying out organic synthesis, including cascade and multicomponent ones. In this research, a novel electrocatalytic multicomponent transformation was found: the electrochemical multicomponent assembly of arylaldehydes, N,N′-dimethylbarbituric acid and 4-hydroxy-6-methyl-2H-pyran-2-one in one pot reaction was carried out in alcohols in an undivided cell in the presence of alkali metal halides with the selective formation of substituted unsymmetrical 1′,3′,6-trimethyl-3-aryl-2′H,3H,4H-spiro[furo[3,2-c]pyran-2,5′-pyrimidine]-2′,4,4′,6′(1′H,3′H)-tetraones in 73–82% yields. This new electrocatalytic process is a selective, facile and efficient way to obtain spiro[furo[3,2-c]pyran-2,5′-pyrimidines]. According to screening molecular docking data using a self-made Python script in Flare, all synthesized compounds may be prominent for different medical applications, such as breast cancer, neurodegenerative diseases and treatments connected with urinary tract, bones and the cardiovascular system

    ILC Reference Design Report Volume 1 - Executive Summary

    No full text
    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization.The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization

    ILC Reference Design Report Volume 4 - Detectors

    No full text
    This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics.This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics

    ILC Reference Design Report Volume 3 - Accelerator

    No full text
    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2 s^-1. The complex includes a polarized electron source, an undulator-based positron source, two 6.7 km circumference damping rings, two-stage bunch compressors, two 11 km long main linacs and a 4.5 km long beam delivery system. This report is Volume III (Accelerator) of the four volume Reference Design Report, which describes the design and cost of the ILC.The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2 s^-1. The complex includes a polarized electron source, an undulator-based positron source, two 6.7 km circumference damping rings, two-stage bunch compressors, two 11 km long main linacs and a 4.5 km long beam delivery system. This report is Volume III (Accelerator) of the four volume Reference Design Report, which describes the design and cost of the ILC
    corecore