6 research outputs found

    Using 14C and 3H to understand groundwater flow and recharge in an aquifer window

    Get PDF
    Knowledge of groundwater residence times and recharge locations is vital to the sustainable management of groundwater resources. Here we investigate groundwater residence times and patterns of recharge in the Gellibrand Valley, southeast Australia, where outcropping aquifer sediments of the Eastern View Formation form an "aquifer window" that may receive diffuse recharge from rainfall and recharge from the Gellibrand River. To determine recharge patterns and groundwater flow paths, environmental isotopes (3H, 14C, δ13C, δ18O, δ2H) are used in conjunction with groundwater geochemistry and continuous monitoring of groundwater elevation and electrical conductivity. The water table fluctuates by 0.9 to 3.7 m annually, implying recharge rates of 90 and 372 mm yr−1. However, residence times of shallow (11 to 29 m) groundwater determined by 14C are between 100 and 10 000 years, 3H activities are negligible in most of the groundwater, and groundwater electrical conductivity remains constant over the period of study. Deeper groundwater with older 14C ages has lower δ18O values than younger, shallower groundwater, which is consistent with it being derived from greater altitudes. The combined geochemistry data indicate that local recharge from precipitation within the valley occurs through the aquifer window, however much of the groundwater in the Gellibrand Valley predominantly originates from the regional recharge zone, the Barongarook High. The Gellibrand Valley is a regional discharge zone with upward head gradients that limits local recharge to the upper 10 m of the aquifer. Additionally, the groundwater head gradients adjacent to the Gellibrand River are generally upwards, implying that it does not recharge the surrounding groundwater and has limited bank storage. 14C ages and Cl concentrations are well correlated and Cl concentrations may be used to provide a first-order estimate of groundwater residence times. Progressively lower chloride concentrations from 10 000 years BP to the present day are interpreted to indicate an increase in recharge rates on the Barongarook High. © Author(s) 2014

    Application of multi‑method approach to assess groundwater–surface water interactions, for catchment management

    Get PDF
    Globally, the dependence of river systems to delayed discharge of subsurface water to augment flows during dry seasons is well documented. Discharge of fresh subsurface water can dilute concentrated river flow quality during reduced flow. Observed and reported results on the Berg River’s declining water quantity and quality are a concern to the regions socio-economic growth and environmental integrity. Understanding the role of subsurface water discharges on the quantity and quality of receiving surface water courses can improve their management during dry periods. A case study was designed and implemented in the upper Berg River catchment in the Western Cape Province of South Africa to assess the influence of groundwater–surface water interaction on water quantity and quality. This study aimed to quantify and characterize the quality of subsurface water available in the upper catchment to improve observed declining water quality downstream. Hydrograph separation provided estimates of water fluxes during 2012–2014 low and high flow periods, while hydrochemical analysis provided insights on impacts of major land use activity in this catchment on water resources. Hydrograph separation analysis indicated that the Berg River is 37.9% dependent on subsurface water discharges annually. Dominant Na–Cl-type water indicates the quality of water from the upper Berg River is largely affected by natural processes including short residence times of aquifer water, rock–water interactions and atmospheric deposition of NaCl ions. These results provide insights for suggesting management options to be implemented to protect subsurface water for continued dilution and water resources management in the lower catchments
    corecore