184 research outputs found

    Screening for fetal growth restriction with universal third trimester ultrasonography in nulliparous women in the Pregnancy Outcome Prediction (POP) study: a prospective cohort study.

    Get PDF
    BACKGROUND: Fetal growth restriction is a major determinant of adverse perinatal outcome. Screening procedures for fetal growth restriction need to identify small babies and then differentiate between those that are healthy and those that are pathologically small. We sought to determine the diagnostic effectiveness of universal ultrasonic fetal biometry in the third trimester as a screening test for small-for-gestational-age (SGA) infants, and whether the risk of morbidity associated with being small differed in the presence or absence of ultrasonic markers of fetal growth restriction. METHODS: The Pregnancy Outcome Prediction (POP) study was a prospective cohort study of nulliparous women with a viable singleton pregnancy at the time of the dating ultrasound scan. Women participating had clinically indicated ultrasonography in the third trimester as per routine clinical care and these results were reported as usual (selective ultrasonography). Additionally, all participants had research ultrasonography, including fetal biometry at 28 and 36 weeks' gestational age. These results were not made available to participants or treating clinicians (universal ultrasonography). We regarded SGA as a birthweight of less than the 10th percentile for gestational age and screen positive for SGA an ultrasonographic estimated fetal weight of less than the 10th percentile for gestational age. Markers of fetal growth restriction included biometric ratios, utero-placental Doppler, and fetal growth velocity. We assessed outcomes for consenting participants who attended research scans and had a livebirth at the Rosie Hospital (Cambridge, UK) after the 28 weeks' research scan. FINDINGS: Between Jan 14, 2008, and July 31, 2012, 4512 women provided written informed consent of whom 3977 (88%) were eligible for analysis. Sensitivity for detection of SGA infants was 20% (95% CI 15-24; 69 of 352 fetuses) for selective ultrasonography and 57% (51-62; 199 of 352 fetuses) for universal ultrasonography (relative sensitivity 2·9, 95% CI 2·4-3·5, p<0·0001). Of the 3977 fetuses, 562 (14·1%) were identified by universal ultrasonography with an estimated fetal weight of less than the 10th percentile and were at an increased risk of neonatal morbidity (relative risk [RR] 1·60, 95% CI 1·22-2·09, p=0·0012). However, estimated fetal weight of less than the 10th percentile was only associated with the risk of neonatal morbidity (pinteraction=0·005) if the fetal abdominal circumference growth velocity was in the lowest decile (RR 3·9, 95% CI 1·9-8·1, p=0·0001). 172 (4%) of 3977 pregnancies had both an estimated fetal weight of less than the 10th percentile and abdominal circumference growth velocity in the lowest decile, and had a relative risk of delivering an SGA infant with neonatal morbidity of 17·6 (9·2-34·0, p<0·0001). INTERPRETATION: Screening of nulliparous women with universal third trimester fetal biometry roughly tripled detection of SGA infants. Combined analysis of fetal biometry and fetal growth velocity identified a subset of SGA fetuses that were at increased risk of neonatal morbidity. FUNDING: National Institute for Health Research, Medical Research Council, Sands, and GE Healthcare.This work was supported by the National Institute for Health Research (NIHR) Cambridge Comprehensive Biomedical Research Centre and the Stillbirth and Neonatal Death Society. DP was supported by a Medical Research Council (MRC) Clinical Training Fellowship. IRW is supported by a MRC Unit Programme (number U105260558). GE Healthcare (Fairfield, CT, USA) donated two Voluson i ultrasound systems for this study. This study was also supported by the NIHR Cambridge Clinical Research Facility, where all visits at about 20, 28, and 36 weeks took place. No direct or indirectly supporting bodies for the project were involved in any aspect of preparation of this paper for publication. We thank the Perinatal Institute for providing a bulk calculator for customised percentiles of estimated fetal weight. We thank all the women who participated in the study, and all the staff in the Rosie Hospital (Cambridge, UK) and NIHR Cambridge Clinical Research Facility who provided direct or indirect assistance for the study.This is the final published version of the article. It was originally published in The Lancet (Sovio U, White IR, Dacey A, Pasupathy D, Smith GCS, The Lancet, 2015, doi:10.1016/S0140-6736(15)00131-2). The final version is available at http://dx.doi.org/10.1016/S0140-6736(15)00131-2

    Fetal Growth and the Risk of Spontaneous Preterm Birth in a Prospective Cohort Study of Nulliparous Women.

    Get PDF
    Previous studies have suggested an association between fetal growth restriction and the risk of spontaneous preterm birth (sPTB). However, addressing this association is methodologically challenging. We conducted a prospective cohort study of nulliparous women with a singleton pregnancy in Cambridge, United Kingdom (2008-2012). Ultrasonic fetal biometry was performed at 20 weeks of gestation as per routine clinical care. Participants also had blinded research ultrasonography performed at approximately 28 weeks. Biometric measurements were expressed as gestational-age-adjusted z scores. Fetal growth velocity was quantified by change in z score between 20 weeks and 28 weeks. Risk of sPTB, defined as delivery at ≥28 weeks and <37 weeks associated with labor in the absence of induction, was analyzed using cause-specific Cox regression. Of 3,892 women, 98 (2.5%) had sPTB. When compared with the other decile groups, the lowest decile of growth velocity of the fetal femur between 20 and 28 weeks was associated with increased risk of sPTB (hazard ratio = 2.37, 95% confidence interval: 1.43, 3.93; P < 0.001). Adjustment for maternal characteristics had no material effect (hazard ratio = 2.50, 95% confidence interval: 1.50, 4.14; P < 0.001). There were no significant associations between other fetal measurements and risk of sPTB. To conclude, slow growth velocity of the fetal femur is associated with an increased risk of sPTB.This study was funded by the National Institute for Health Research Cambridge Comprehensive Biomedical Research Centre (grant number A019057) and Stillbirth and Neonatal Death Society (SANDS). UP was funded by the Dr. Herchel Smith Fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. GE donated two ultrasound machines for use in the project.This is the author accepted manuscript. It is currently embargoed pending publication by Oxford University Press

    Genome-wide oxidative bisulfite sequencing identifies sex-specific methylation differences in the human placenta.

    Get PDF
    DNA methylation is an important regulator of gene function. Fetal sex is associated with the risk of several specific pregnancy complications related to placental function. However, the association between fetal sex and placental DNA methylation remains poorly understood. We carried out whole-genome oxidative bisulfite sequencing in the placentas of two healthy female and two healthy male pregnancies generating an average genome depth of coverage of 25x. Most highly ranked differentially methylated regions (DMRs) were located on the X chromosome but we identified a 225 kb sex-specific DMR in the body of the CUB and Sushi Multiple Domains 1 (CSMD1) gene on chromosome 8. The sex-specific differential methylation pattern observed in this region was validated in additional placentas using in-solution target capture. In a new RNA-seq data set from 64 female and 67 male placentas, CSMD1 mRNA was 1.8-fold higher in male than in female placentas (P value = 8.5 × 10-7, Mann-Whitney test). Exon-level quantification of CSMD1 mRNA from these 131 placentas suggested a likely placenta-specific CSMD1 isoform not detected in the 21 somatic tissues analyzed. We show that the gene body of an autosomal gene, CSMD1, is differentially methylated in a sex- and placental-specific manner, displaying sex-specific differences in placental transcript abundance

    Fetal and infant growth and the risk of obesity during early childhood: the Generation R Study.

    Get PDF
    OBJECTIVE: To examine whether infant growth rates are influenced by fetal growth characteristics and are associated with the risks of overweight and obesity in early childhood. DESIGN: This study was embedded in the Generation R Study, a population-based prospective cohort study from fetal life onward. METHODS: Fetal growth characteristics (femur length (FL) and estimated fetal weight (EFW)) were assessed in the second and third trimesters and at birth (length and weight). Infant peak weight velocity (PWV), peak height velocity (PHV), and body mass index at adiposity peak (BMIAP) were derived for 6267 infants with multiple height and weight measurements. RESULTS: EFW measured during the second trimester was positively associated with PWV and BMIAP during infancy. Subjects with a smaller weight gain between the third trimester and birth had a higher PWV. FL measured during the second trimester was positively associated with PHV. Gradual length gain between the second and third trimesters and between the third trimester and birth were associated with higher PHV. Compared with infants in the lowest quintile, the infants in the highest quintile of PWV had strongly increased risks of overweight/obesity at the age of 4 years (odds ratio (95% confidence interval): 15.01 (9.63, 23.38)). CONCLUSION: Fetal growth characteristics strongly influence infant growth rates. A higher PWV, which generally occurs in the first month after birth, was associated with an increased risk of overweight and obesity at 4 years of age. Longer follow-up studies are necessary to determine how fetal and infant growth patterns affect the risk of disease in later life

    Prediction of Preeclampsia Using the Soluble fms-Like Tyrosine Kinase 1 to Placental Growth Factor Ratio: A Prospective Cohort Study of Unselected Nulliparous Women.

    Get PDF
    We sought to assess the ratio of sFlt-1 (soluble fms-like tyrosine kinase 1) to PlGF (placental growth factor) in maternal serum as a screening test for preeclampsia in unselected nulliparous women with a singleton pregnancy. We studied 4099 women recruited to the POP study (Pregnancy Outcome Prediction) (Cambridge, United Kingdom). The sFlt-1:PlGF ratio was measured using the Roche Cobas e411 platform at ≈20, ≈28, and ≈36 weeks of gestational age (wkGA). Screen positive was defined as an sFlt-1:PlGF ratio >38, but higher thresholds were also studied. At 28 wkGA, an sFlt-1:PlGF ratio >38 had a positive predictive value (PPV) of 32% for preeclampsia and preterm birth, and the PPV was similar comparing women with low and high prior risk of disease. At 36 wkGA, an sFlt-1:PlGF ratio >38 had a PPV for severe preeclampsia of 20% in high-risk women and 6.4% in low-risk women. At 36 wkGA, an sFlt-1:PlGF ratio >110 had a PPV of 30% for severe preeclampsia, and the PPV was similar comparing low- and high-risk women. Overall, at 36 wkGA, 195 (5.2%) women either had an sFlt-1:PlGF ratio of >110 or an sFlt-1:PlGF ratio >38 plus maternal risk factors: 43% of these women developed preeclampsia, about half with severe features. Among low-risk women at 36 wkGA, an sFlt-1:PlGF ratio ≤38 had a negative predictive value for severe preeclampsia of 99.2%. The sFlt-1:PlGF ratio provided clinically useful prediction of the risk of the most important manifestations of preeclampsia in a cohort of unselected nulliparous women.The work was supported by the National Institute for Health Research (NIHR) Cambridge Comprehensive Biomedical Research Centre (Women’s Health theme), and project grants from the Medical Research Council (United Kingdom; G1100221) and the Stillbirth and neonatal death society (Sands). The study was also supported by Roche Diagnostics (provision of equipment and reagents for analysis of sFlt-1 [soluble fms-like tyrosine kinase 1] and PlGF [placental growth factor]), by GE Healthcare (donation of 2 Voluson i ultrasound systems for this study), and by the NIHR Cambridge Clinical Research Facility, where all research visits took place

    Scoping the impact of the national child measurement programme feedback on the child obesity pathway: study protocol.

    Get PDF
    BACKGROUND: The National Child Measurement Programme was established to measure the height and weight of children at primary school in England and provides parents with feedback about their child's weight status. In this study we will evaluate the impact of the National Child Measurement Programme feedback on parental risk perceptions of overweight, lifestyle behaviour and health service use. METHODS: The study will be a prospective cohort study of parents of children enrolled in the National Child Measurement Programme and key service providers from 5 primary care trusts (administrative bodies responsible for providing primary and secondary care services). We will conduct baseline questionnaires, followed by provision of weight feedback and 3 follow up questionnaires over the course of a year. Questionnaires will measure change in parental risk perception of overweight, health behaviours and health service use. Qualitative interviews will be used to identify barriers and facilitators to change. This study will produce preliminary data on National Health Service costs associated with weight feedback and determine which feedback approach (letter and letter plus telephone) is more effective. DISCUSSION: This study will provide the first large scale evaluation of the National Child Measurement Programme feedback. Findings from this evaluation will inform future planning of the National Child Measurement Programme.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Universal Third Trimester Ultrasonic Screening Using Fetal Macrosomia in the Prediction of Adverse Perinatal Outcome, a Systematic Review and Meta-analysis of Diagnostic Test Accuracy.

    Get PDF
    Background: The effectiveness of screening for macrosomia is not well established. One of the critical elements of an effective screening program is the diagnostic accuracy of a test at predicting the condition. The objective of this study is to investigate the diagnostic effectiveness of universal ultrasonic fetal biometry in predicting the delivery of a macrosomic infant, shoulder dystocia, and associated neonatal morbidity in low- and mixed-risk populations. Methods and findings: We conducted a predefined literature search in Medline, Excerpta Medica database (EMBASE), the Cochrane library and ClinicalTrials.gov from inception to May 2020. No language restrictions were applied. We included studies where the ultrasound was performed as part of universal screening and those that included low- and mixed-risk pregnancies and excluded studies confined to high risk pregnancies. We used the estimated fetal weight (EFW) (multiple formulas and thresholds) and the abdominal circumference (AC) to define suspected large for gestational age (LGA). Adverse perinatal outcomes included macrosomia (multiple thresholds), shoulder dystocia, and other markers of neonatal morbidity. The risk of bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Meta-analysis was carried out using the hierarchical summary receiver operating characteristic (ROC) and the bivariate logit-normal (Reitsma) models. We identified 41 studies that met our inclusion criteria involving 112,034 patients in total. These included 11 prospective cohort studies (N = 9986), one randomized controlled trial (RCT) (N = 367), and 29 retrospective cohort studies (N = 101,681). The quality of the studies was variable, and only three studies blinded the ultrasound findings to the clinicians. Both EFW >4,000 g (or 90th centile for the gestational age) and AC >36 cm (or 90th centile) had >50% sensitivity for predicting macrosomia (birthweight above 4,000 g or 90th centile) at birth with positive likelihood ratios (LRs) of 8.74 (95% confidence interval [CI] 6.84–11.17) and 7.56 (95% CI 5.85–9.77), respectively. There was significant heterogeneity at predicting macrosomia, which could reflect the different study designs, the characteristics of the included populations, and differences in the formulas used. An EFW >4,000 g (or 90th centile) had 22% sensitivity at predicting shoulder dystocia with a positive likelihood ratio of 2.12 (95% CI 1.34–3.35). There was insufficient data to analyze other markers of neonatal morbidity. Conclusions: In this study, we found that suspected LGA is strongly predictive of the risk of delivering a large infant in low- and mixed-risk populations. However, it is only weakly (albeit statistically significantly) predictive of the risk of shoulder dystocia. There was insufficient data to analyze other markers of neonatal morbidity
    corecore