6 research outputs found

    Synthesis, In Silico Studies, and Evaluation of Syn and Anti Isomers of N-Substituted Indole-3-carbaldehyde Oxime Derivatives as Urease Inhibitors against Helicobacter pylori

    No full text
    Gastrointestinal tract infection caused by Helicobacter pylori is a common virulent disease found worldwide, and the infection rate is much higher in developing countries than in developed ones. In the pathogenesis of H. pylori in the gastrointestinal tract, the secretion of the urease enzyme plays a major role. Therefore, inhibition of urease is a better approach against H. pylori infection. In the present study, a series of syn and anti isomers of N-substituted indole-3-carbaldehyde oxime derivatives was synthesized via Schiff base reaction of appropriate carbaldehyde derivatives with hydroxylamine hydrochloride. The in vitro urease inhibitory activities of those derivatives were evaluated against that of Macrotyloma uniflorum urease using the modified Berthelot reaction. Out of the tested compounds, compound 8 (IC50 = 0.0516 ± 0.0035 mM) and compound 9 (IC50 = 0.0345 ± 0.0008 mM) were identified as the derivatives with potent urease inhibitory activity with compared to thiourea (IC50 = 0.2387 ± 0.0048 mM). Additionally, in silico studies for all oxime compounds were performed to investigate the binding interactions with the active site of the urease enzyme compared to thiourea. Furthermore, the drug-likeness of the synthesized oxime compounds was also predicted

    Early detection of non-small cell lung cancer in liquid biopsies by ultrasensitive protease activity analysis

    No full text
    Aim: A significant fraction of mortalities from non-small cell lung cancer could be prevented, if the cancer would be diagnosed earlier. Nanobiosensors for the ultrasensitive detection of active proteases in serum were designed to detect a significant protease activity signature of non-small cell lung cancer (stage I and higher).Methods: We determined the activity of nine protease biomarkers in the sera of non-small cell lung cancer patients and compared them with the protease activities of a control group of healthy human subjects using optical nanobiosensors. They consist of a central Fe/Fe3O4 core/shell nanoparticle with an attached Fluorescence resonance energy transfer-pair [tetrakis-carboxyphenyl porphyrin (TCPP) and cyanine 5.5]. TCPP is attached to the central nanoparticle via a protease-cleavable tether, whereas cyanine 5.5 is tethered permanently to the dopamine-layer surrounding the nanoparticle.Results: Based on the activity pattern of urokinase plasminogen activator, matrix metalloproteinases 1, 2, 3, 7, 9, and 13, and cathepsins B and L as well, non-small cell lung cancer could be detected at stage I by means of a liquid biopsy.Conclusion: This feasibility study, comprising 33 non-small cell lung cancer patients and 20 apparently healthy subjects, clearly demonstrated the feasibility of minimally invasive early diagnosis of non-small cell lung cancer, starting with stage I

    A nanobiosensor for the detection of arginase activity

    No full text
    A nanobiosensor for arginase detection was designed and synthesized. It features a central dopamine-coated iron/iron oxide nanoparticle to which sulfonated cyanine 7.0 is tethered via a stable amide bond. Cyanine 5.5 is linked to the N-terminal of the peptide sequence GRRRRRRRG. Arginine (R) reacts to ornithine (O) in the presence of arginase. Based on calibration with commercially obtained arginase II, the limit of detection (LOD) is picomolar. It is noteworthy that the nanobiosensor for arginase detection does not show a fluorescence increase when incubated with the enzyme NO-reductase, which also uses arginase as substrate, but is indicative of an inflammatory response by the host to cancer and infections. Arginase activity was determined in a syngeneic mouse model for aggressive breast cancer (4 T1 tumors in BALB/c mice). It was found that the arginase activity is systemically enhanced, but especially pronounced in the active tumor regions. (C) 2016 Elsevier Inc. All rights reserved

    Nanoplatforms for highly sensitive fluorescence detection of cancer-related proteases

    No full text
    Numerous proteases are known to be necessary for cancer development and progression including matrix metalloproteinases (MMPs), tissue serine proteases, and cathepsins. The goal of this research is to develop an Fe/Fe3O4 nanoparticle-based system for clinical diagnostics, which has the potential to measure the activity of cancer-associated proteases in biospecimens. Nanoparticle-based "light switches" for measuring protease activity consist of fluorescent cyanine dyes and porphyrins that are attached to Fe/Fe3O4 nanoparticles via consensus sequences. These consensus sequences can be cleaved in the presence of the correct protease, thus releasing a fluorescent dye from the Fe/Fe3O4 nanoparticle, resulting in highly sensitive (down to 1 x 10(-16) mol l(-1) for 12 proteases), selective, and fast nanoplatforms (required time: 60 min)

    Early breast cancer screening using iron/iron oxide-based nanoplatforms with sub-femtomolar limits of detection

    No full text
    Proteases, including matrix metalloproteinases (MMPs), tissue serine proteases, and cathepsins (CTS) exhibit numerous functions in tumor biology. Solid tumors are characterized by changes in protease expression levels by tumor and surrounding tissue. Therefore, monitoring protease levels in tissue samples and liquid biopsies is a vital strategy for early cancer detection. Water-dispersable Fe/Fe3O4-core/shell based nanoplatforms for protease detection are capable of detecting protease activity down to sub-femtomolar limits of detection. They feature one dye (tetrakis(carboxyphenyl)porphyrin (TCPP)) that is tethered to the central nanoparticle by means of a protease-cleavable consensus sequence and a second dye (Cy 5.5) that is directly linked. Based on the protease activities of urokinase plasminogen activator (uPA), MMPs 1, 2, 3, 7, 9, and 13, as well as CTS B and L, human breast cancer can be detected at stage I by means of a simple serum test. By monitoring CTS B and L stage 0 detection may be achieved. This initial study, comprised of 46 breast cancer patients and 20 apparently healthy human subjects, demonstrates the feasibility of protease-activity-based liquid biopsies for early cancer diagnosis

    Early breast cancer screening using iron/iron oxide-based nanoplatforms with sub-femtomolar limits of detection

    No full text
    Proteases, including matrix metalloproteinases (MMPs), tissue serine proteases, and cathepsins (CTS) exhibit numerous functions in tumor biology. Solid tumors are characterized by changes in protease expression levels by tumor and surrounding tissue. Therefore, monitoring protease levels in tissue samples and liquid biopsies is a vital strategy for early cancer detection. Water-dispersable Fe/Fe3O4-core/shell based nanoplatforms for protease detection are capable of detecting protease activity down to sub-femtomolar limits of detection. They feature one dye (tetrakis(carboxyphenyl)porphyrin (TCPP)) that is tethered to the central nanoparticle by means of a protease-cleavable consensus sequence and a second dye (Cy 5.5) that is directly linked. Based on the protease activities of urokinase plasminogen activator (uPA), MMPs 1, 2, 3, 7, 9, and 13, as well as CTS B and L, human breast cancer can be detected at stage I by means of a simple serum test. By monitoring CTS B and L stage 0 detection may be achieved. This initial study, comprised of 46 breast cancer patients and 20 apparently healthy human subjects, demonstrates the feasibility of protease-activity-based liquid biopsies for early cancer diagnosis
    corecore