673 research outputs found

    Analytic model for galaxy and dark matter clustering

    Get PDF
    We investigate an analytic model to compute nonlinear power spectrum of dark matter, galaxies and their cross-correlation. The model is based on Press-Schechter halos, which cluster and have realistic dark matter profiles. The total power spectrum is a sum of two contributions, one from correlations betwen the halos and one from correlations within the same halo. We show that such a model can give dark matter power spectra which match well with the results of N-body simulations, provided that concentration parameter decreases with the halo mass. Galaxy power spectrum differs from dark matter power spectrum because pair weighted number of galaxies increases less rapidly than the halo mass, as predicted by theoretical models and observed in clusters. In this case the resulting power spectrum becomes a power law with the slope closed to the observed. Such a model also predicts a later onset of nonlinear clustering compared to the dark matter, which is needed to reconcile the CDM models with the data. Generic prediction of this model is that bias is scale dependent and nonmonotonic. For red or elliptical galaxies bias in power spectrum may be scale dependent even on very large scales. Our predictions for galaxy-dark matter correlations, which can be observed through the galaxy-galaxy lensing, show that these cannot be interpreted simply as an average halo profile of a typical galaxy, because different halo masses dominate at different scales and because larger halos host more than one galaxy. We discuss the prospects of using cross-correlations in combination with galaxy clustering to determine the dark matter power spectrum (ABRIDGED).Comment: 16 pages, 7 figures, submitted to Phys. Rev.

    Early reionization by decaying particles and cosmic microwave background radiation

    Full text link
    We study the reionization scenario in which ionizing UV photons emitted from decaying particle, in addition to usual contributions from stars and quasars, ionize the universe. It is found that the scenario is consistent with both the first year data of the Wilkinson Microwave Anisotropy Probe and the fact that the universe is not fully ionized until z \sim 6 as observed by Sloan Digital Sky Survey. Likelihood analysis revealed that rather broad parameter space can be chosen. This scenario will be discriminated by future observations, especially by the EE polarization power spectrum of cosmic microwave background radiation.Comment: 5 pages, 5 figures, fig 2, table 1, and some typos are correcte

    Gravitational lensing as a contaminant of the gravity wave signal in CMB

    Full text link
    Gravity waves (GW) in the early universe generate B-type polarization in the cosmic microwave background (CMB), which can be used as a direct way to measure the energy scale of inflation. Gravitational lensing contaminates the GW signal by converting the dominant E polarization into B polarization. By reconstructing the lensing potential from CMB itself one can decontaminate the B mode induced by lensing. We present results of numerical simulations of B mode delensing using quadratic and iterative maximum-likelihood lensing reconstruction methods as a function of detector noise and beam. In our simulations we find the quadratic method can reduce the lensing B noise power by up to a factor of 7, close to the no noise limit. In contrast, the iterative method shows significant improvements even at the lowest noise levels we tested. We demonstrate explicitly that with this method at least a factor of 40 noise power reduction in lensing induced B power is possible, suggesting that T/S=10^-6 may be achievable in the absence of sky cuts, foregrounds, and instrumental systematics. While we do not find any fundamental lower limit due to lensing, we find that for high-sensitivity detectors residual lensing noise dominates over the detector noise.Comment: 6 pages, 2 figures, submitted to PR

    Power Spectra in Global Defect Theories of Cosmic Structure Formation

    Full text link
    An efficient technique for computing perturbation power spectra in field ordering theories of cosmic structure formation is introduced, enabling computations to be carried out with unprecedented precision. Large scale simulations are used to measure unequal time correlators of the source stress energy, taking advantage of scaling during matter and radiation domination, and causality, to make optimal use of the available dynamic range. The correlators are then re-expressed in terms of a sum of eigenvector products, a representation which we argue is optimal, enabling the computation of the final power spectra to be performed at high accuracy. Microwave anisotropy and matter perturbation power spectra for global strings, monopoles, textures and non-topological textures are presented and compared with recent observations.Comment: 4 pages, compressed and uuencoded RevTex file and postscript figure

    Mimicking transPlanckian effects in the CMB with conventional physics

    Full text link
    We investigate the possibility that fields coupled to the inflaton can influence the primordial spectrum of density perturbations through their coherent motion. For example, the second field in hybrid inflation might be oscillating at the beginning of inflation rather than at the minimum of its potential. Although this effect is washed out if inflation lasts long enough, we note that there can be up to 30 e-foldings of inflation prior to horizon crossing of COBE fluctuations while still giving a potentially visible distortion. Such pumping of the inflaton fluctuations by purely conventional physics can resemble transPlanckian effects which have been widely discussed. The distortions which they make to the CMB could leave a distinctive signature which differs from generic effects like tilting of the spectrum.Comment: 3 pages, 4 figures; presented at PASCOS 03, TIFR, Mumbai, Indi

    Detection of large scale intrinsic ellipticity-density correlation from the Sloan Digital Sky Survey and implications for weak lensing surveys

    Full text link
    The power spectrum of weak lensing shear caused by large-scale structure is an emerging tool for precision cosmology, in particular for measuring the effects of dark energy on the growth of structure at low redshift. One potential source of systematic error is intrinsic alignments of ellipticities of neighbouring galaxies (II correlation) that could mimic the correlations due to lensing. A related possibility pointed out by Hirata and Seljak (2004) is correlation between the intrinsic ellipticities of galaxies and the density field responsible for gravitational lensing shear (GI correlation). We present constraints on both the II and GI correlations using 265 908 spectroscopic galaxies from the SDSS, and using galaxies as tracers of the mass in the case of the GI analysis. The availability of redshifts in the SDSS allows us to select galaxies at small radial separations, which both reduces noise in the intrinsic alignment measurement and suppresses galaxy- galaxy lensing (which otherwise swamps the GI correlation). While we find no detection of the II correlation, our results are nonetheless statistically consistent with recent detections found using the SuperCOSMOS survey. In contrast, we have a clear detection of GI correlation in galaxies brighter than L* that persists to the largest scales probed (60 Mpc/h) and with a sign predicted by theoretical models. This correlation could cause the existing lensing surveys at z~1 to underestimate the linear amplitude of fluctuations by as much as 20% depending on the source sample used, while for surveys at z~0.5 the underestimation may reach 30%. (Abridged.)Comment: 16 pages, matches version published in MNRAS (only minor changes in presentation from original version
    • …
    corecore